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Abstract
We propose Pony-ORCA, a fully concurrent protocol for garbage
collection in the actor paradigm. It allows actors to perform garbage
collection concurrently with any number of other actors. It does not
require any form of synchronization across actors except those in-
troduced through the actor paradigm, i.e. message send and mes-
sage receive.

Pony-ORCA is based on ideas from ownership and deferred,
distributed, weighted reference counting. It adapts the messaging
system of actors to keep the reference count consistent.

We introduce a formal model and describe the invariants on
which it relies. We illustrate through an example and sketch how
these invariants are maintained. We show some benchmarks and
argue that the protocol can be implemented efficiently.

1. Introduction
The actor paradigm [4] was proposed in 1973 by Carl Hewitt [22].
An actor is a computational entity that, in response to a message it
receives, can: 1) send a finite number of (asynchronous) messages
to other actors; 2) create a finite number of new actors; and 3)
designate the code to be executed for the next message it receives.
The code executed upon receipt of a message is called a behaviour.
The actor paradigm has been adopted in a functional setting, e.g. in
Erlang [7], and in the object-oriented paradigm [5, 10, 14, 32].

Implicit garbage collection is crucial for convenience of pro-
gramming, however automatic garbage collection often proves to
be a performance bottleneck, e.g, [12] reports pauses of around 3
seconds.

In this paper, we propose Pony-ORCA, a garbage collection
protocol for actor-based object oriented programming languages.
We have implemented Pony-ORCA for the language Pony [6],
but our protocol is applicable for any languages which fulfils the
criteria we give later. Our protocol is based on ownership and
deferred distributed weighted reference counting.

Ownership types [15, 30] were proposed with the remit to de-
limit groups of related objects into different areas of the heap. They
were used for garbage collection under the requirement that there
are no incoming references to these areas [31]. Such a scheme
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works well in the concurrent setting, but the no-incoming refer-
ences requirement is often far too strong.

Reference counting garbage collection puts no requirement on
the heap structure; instead, it tracks, for each object, a count of the
number of references to it held by other objects [8]. This approach
has been further developed to detect cycles and to deal with the
distributed setting [19, 28]. However, the approach has poor local-
ity and thus, in the concurrent setting, it requires synchronization
across the various threads [25].

We employ the locality found in actors, and the implicit syn-
chronisation afforded by the actor messaging system, to develop a
fully concurrent garbage collection algorithm. Pony-ORCA allows
the fully concurrent garbage collection of objects as well as actors.
In particular:

• An actor may perform garbage collection concurrently with
other actors while they are executing any kind of behaviour.

• An actor may decide whether to garbage collect an object solely
based on its own local state, without consultation with, or in-
specting the state of, any other actor.

• No synchronization between actors is required during garbage
collection, other than potential message sends.

• An actor may garbage collect between its normal behaviours,
i.e. it need not wait until its message queue is empty.

• Pony-ORCA can be applied to several programming languages,
provided that they satisfy the following two requirements:

Actor behaviours are atomic.

Message delivery is causal—i.e. messages arrive before any
messages they may have caused, if they have the same
destination.

Our approach is based on implicit ownership, whereby an actor
owns any object that it has allocated. Each actor is responsible for
garbage collecting the objects it owns. The challenge is that an actor
may have no path to an object it owns, while other actors may still
have paths to that object, or the object may appear in messages
in some other actor’s message queue. It would be erroneous to
garbage collect such an object.

In our approach, an actor maintains a reference count for all the
objects it owns. The reference count is guaranteed to be non-zero
for any object which is accessible from any message or any actor
other than its owner. Thus, an actor can safely garbage collect any
object which is locally unreachable, and whose reference count is
zero.

There is the remaining challenge of ensuring that the reference
count indeed is non-zero for objects which are accessible from
actors other than their owner. This is maintained through a system
whereby all the actors which may reach an object they do not
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own also maintain their (foreign) reference count, and whereby
the sum of all foreign reference counts of an object corresponds
to its owning actor’s (local) reference count for that object. This
requirement needs to be modified to take into account the messages
in the various queues. Therefore, in Pony-ORCA, when an actor
receives or sends references to objects, it may need to inform the
owning actor through protocol-specific messages.

Our paper is organized as follows: in Section 2 we present
related work on garbage collection protocols; in Section 3 we
briefly introduce the Pony language; in Section 4 we define the
runtime configuration and what is a well-formed configuration,
in the Pony-ORCA protocol; in Section 5 we argue why objects
can be safely collected and how the consistency of the runtime
configuration is maintained; we discuss our results in Section 6;
and we finish the paper with conclusions in Section 7.

2. Related work
Previously, actor-model languages and libraries have used five dif-
ferent approaches to garbage collection. The first is to combine
manual termination of actors with a standard tracing garbage col-
lector. These are primarily JVM based implementations, such as
Scala [21], Akka [5], Kilim [32], AmbientTalk[33], and SALSA
2.0 [34]. The second is to combine manual termination with a
largely per-actor tracing collector, using copying of messages to
move data into actor heaps, that also has some global data. These
are primarily BEAM based implementations, such as Erlang [7]
and Elixir [20]. The third is to transform the actor graph into an
object graph and use a tracing collector to collect actors as well as
objects, as done in ActorFoundry [3]. The fourth is to use reference
listing and snapshots to collect actors, as done in SALSA 1.0 [35].
The fifth is to use a message-based actor collection protocol that
can collect actors and detect termination fully concurrently, with-
out a stop-the-world step [17].

In this work, we extend message-based actor collection [17],
applying it to passive object collection when objects are shared by
reference amongst actors.

Our work draws heavily on existing distributed garbage collec-
tion algorithms, particularly on distributed reference counting [18,
19, 25, 27–29]. A key difference is that Pony-ORCA does not have
reference count cycles amongst objects, since only actors hold ref-
erence counts for objects and those counts are independent of the
number of paths to an object in an actor’s reachable heap. Thus, we
do not require cycle detection [8, 18, 19, 25, 27] or reference list-
ing [29]. This approach also eliminates heap change related refer-
ence count changes, which in effect gives highly deferred reference
counting [9].

Pony-ORCA is also influenced by the Emerald garbage collec-
tor [26], particularly in the design goals of comprehensiveness, con-
currency, expediency, efficiency, and correctness. In addition, inde-
pendently collected actor heaps are similar to Emerald’s local col-
lector, with our message protocol effectively replacing the global
collector.

3. The language Pony and Causal Message
Delivery

The language Pony supports actors (active objects), and objects
(passive objects). Objects and actors have fields and synchronous
methods; in addition, actors have asynchronous methods, called be-
haviour. Actors may receive asynchronous messages which contain
any number of parameters. These may be addresses or literals (e.g.
integers). The messages are stored in a queue. Whenever an actor
is enabled, it removes the top message from its queue and executes
the body of the corresponding behaviour. Actors and objects may
call synchronous methods on objects and asynchronous behaviours

on other actors. Pony also contains further features: traits, algebraic
data types, generics etc., which, however, we will not be discussing
here. A formal semantics of the Pony subset discussed here appears
in [6].

Causal message delivery requires that whenever a message,
msg1, is a direct or indirect cause of another message, msg2, and the
destination of the two messages is the same, msg1 will be delivered
before msg2. A message msg is a cause of a further message msg′,
if a) an actor sends msg′ after receiving msg, or b) an actor sends
msg′ after sending msg, or c) there exists an intermediate message
msg′′ such that msg is a cause of msg′′, and msg′′ is a cause of
msg′. Therefore, the causal relationship is asymmetric, acyclic, and
transitive.

For example, if actor A sends message msg1 to actor B, and then
sends message msg2 to actor C, and actor C sends message msg3
to actor B after receiving msg2, then msg1 is a cause of msg2, and
also msg2 is a cause of msg3, and by transitivity msg1 is a cause of
msg3. Therefore, causal message delivery requires that actor C will
receive msg1 before receiving msg3.

Causal message delivery is not required in the original formu-
lation of the actor paradigm [22], where it mandates that message
delivery is guaranteed, but need not be ordered. The motivation for
this is to make the actor-model as general as possible. For the same
reason, the original formulation does not require buffered queues.
However, in [17] it is shown how causal messaging can be imple-
mented efficiently in the concurrent setting, and in [11] we have
implemented it in the distributed setting.

Crucially, causal message delivery has been of paramount im-
portance in the development of the actor collection protocol [17],
and of various distributed protocols developed in [11]. We plan
to discuss efficient implementation of causal messaging in further
work.

4. The Pony-ORCA Garbage Collection Protocol
Pony-ORCA is based on a reference counting scheme, whereby
each actor keeps a reference count for the objects it owns. An actor
can decide whether to garbage collect an object it owns solely on
the basis of whether the object is reachable from the owning actor
and whether the object’s (local) reference count is zero. Therefore,
the owner’s reference count for the object must correspond to
references held in other actors or in enqueued messages. For this
reason, non-owning actors also hold (foreign) reference counts to
objects. When an actor sends, receives, or drops a reference to
an object it does not own, it sends protocol-specific messages to
the owner. These protocol-specific messages result in the owner
updating its (local) reference count.

For the approach to work, we require that the owner’s refer-
ence count for an object is a true reflection of the global config-
uration, namely the owner’s (local) reference count together with
pending protocol-specific messages is the same as the sum of the
(foreign) reference counts in the other actors together with pend-
ing language-level messages. In order to maintain this invariant,
whenever objects are sent, received, or become unreachable, the
reference counts will need to be modified and/or protocol-specific
messages sent.

In this section we describe our protocol in more detail, and de-
velop a formal model. In section 4.1 we show diagrammatically
some actors, heaps and queues, and discuss which objects are glob-
ally unreachable. In section 4.2 we show Pony-ORCA specific data
structures. In section 4.3 we define what it means for the owner’s
reference count to be a true reflection of the global configuration
along with further necessary well-formedness conditions.
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Figure 1. Ownership and References diagram.

4.1 Actors, queues, and unreachable objects
In Pony, actors can create new objects, send messages to other ac-
tors (with references to actors and objects, not necessarily allocated
by the sending actor) and receive messages. As we said earlier, it
is possible for an actor to own an object without having a reference
to it, while other actors do have references to it—for instance, an
actor may create an object, send it to other actors and then drop
the reference to that actor. Given this, the protocol needs to ensure
that an object, even though is not reachable from its owner, is not
garbage collected if there exists another actor or a message in one
of the actor’s queues with a reference to it.

EXAMPLE 1. Consider the Ownership and References diagram
from Figure 1. We have actors α1, α2 and α3 and show them in
rounded double boxes. We have objects ω1, ω2, . . . , ω8 and we
show them in rounded single boxes. We show ownership through
square boxes, e.g. α1 owns ω7. We show references through arrows,
e.g. ω3 references ω1. Notice that object ω3 is not reachable from
α2, its owner, but it is reachable from α1.

In Figure 2 we show an abstract representation of heaps, mes-
sage queues and reference counts. We will discuss heaps and ref-
erence counts in the next section. We have message queues Qs1
and Qs2. In Qs1 all the queues are empty. In Qs2 the actor at α1

has a Pony-level message APP(ω6), the actor at α2 has a message
APP(ω7, ω6, ω7) and the queue of the third actor is empty. Message
identifiers are not used in Pony-ORCA; only addresses are consid-
ered.

If we consider the diagram from Figure 1 together with the
queues from Qs1 then the objects ω4, ω5, ω6, ω7, ω8 and actor α3

are globally unreachable. However, if we consider the queues from
Qs2, then ω4 is the only globally unreachable reference.

4.2 Runtime configuration modelling Pony-ORCA
We now model the data structures used in Pony-ORCA, as well as
the Pony runtime entities relevant to the soundness of our protocol.
In Pony-ORCA each actor contains a (local) reference count for any
object it owns, as well as a (foreign) reference count for any other
actor or object it does not own. We represent ownership through the
mapping Owner, and we unify local and foreign reference counts
to one mapping, RC .

We consider sets of addresses, Sall, and distinguish between
object addresses, Sobj , and actor addresses, Sact. Every actor or
object has an owner, which is an actor. We require that the owner of
an actor is the actor itself. We indicate addresses through ι, ι′, etc,
actor addresses through α, α′, etc., and object addresses through ω,
ω′, etc.

Heaps
H1:
Heap1(α1) = {α1, α2, ω1, ω2, ω3, ω4, ω5, ω7, ω8 }
Heap1(α2) = {α1, α2, ω1, ω2, ω3, ω5, ω7, ω8 }
Heap1(α3) = {α2, α3, ω5, ω6 }

H2:
Heap2(α1) = {α1, α2, ω1, ω2, ω3 }
Heap2(α2) = {α2 }

Queues
Qs1:

Qs2:

Counter Tables
CT 1:

α1 α2 α3

α1 5 5 0
α2 1 2 1
α3 0 0 0
ω1 50 50
ω2 3 3
ω3 10 10 0
ω4

ω5 10 40 30
ω6

ω7 10 10
ω8 10 10

CT 2:

α1 α2 α3

α1 6 5
α2 1 4 1
α3 2
ω1 50 50
ω2 3 3
ω3 10 10 0
ω4

ω5 10 40 28
ω6 2
ω7 12 10 1
ω8 10 12 1

Figure 2. Heaps, message queues and counter tables.

3 2015/4/13



DEFINITION 1 (Addresses and Owners). We require enumerable
sets Sall, Sobj , and Sact, and a function

Owner : Sall → Sact
such that

Addr = Sobj ] Sact
ι ∈ Sall
α ∈ Sact
ω ∈ Sobj

and
∀α ∈ Sact.Owner(α) = α

A runtime configuration consists of a per-actor heap, a per-
actor queue of messages, and a per-actor counter table. In order
to argue soundness we need to model the heap. We do not need
to distinguish the class of objects, or the contents of their fields.
All we need to model is the set of addresses which are reachable
from a given address. In the current paper we over-approximate
this information, and our model only represents the set of addresses
reachable from a given actor. In fact, we expect that a valid heap
for an actor contains a superset of the addresses reachable from
an actor, but we do not model reachability. We will give a finer
grained model in further work.

The message queue is a sequence of messages, where the or-
der matters. Messages are either Pony-level messages, or ORCA-
specific messages. Our protocol is not concerned with the ex-
act Pony-level messages sent, but it is concerned with the ad-
dresses these may contain. Pony-level messages are APP(ι?). The
ORCA-specific messages DEC(ι, k) and INC(ι, k) require the actor
to change its reference count to ι accordingly. The counter table
gives the reference count for a given address, reflecting references
from other actors or messages in queues.

DEFINITION 2 (Runtime Configurations).

RunTimeCfg = Sact → ( P(Sall) ×Msg? × (Sall → Z))
Msg ::= APP(ι ∗ ) | INC(ι, k) | DEC(ι, k)

k ∈ N
K ∈ RunTimeCfg

q ∈Msg?

In the remainder we use the following abbreviations

• HeapK(α) = K(α)↓1
• QueueK(α) = K(α)↓2
• MessageK(α, j) = K(α)↓2 (j)
• RCK(α, ι) = K(α)↓3 (ι)

And we require the following well-formed conditions:

WF1. RCK(α, ι) ≥ 0
WF2. ω ∈ HeapK(α) =⇒ Owner(ω) ∈ HeapK(α)

EXAMPLE 2. If we consider the ownership and references diagram
from Figure 1, then Heap1 defined in Figure 2 is valid. Similarly,
Heap2 from Figure 2 is also valid. Heap1 represents a possible
heap before garbage collection, while Heap2 represents a possible
heap after all actors have performed all possible garbage collec-
tion steps. On the other hand, Heap3 defined below

Heap3(α1) = {α1, α2, ω1, ω2, ω3}
Heap3(α2) = {α1, α2, ω1, ω2, ω3}
Heap3(α3) = {ω6, α3 }

is invalid because even though ω6 is in the heap of α3, and ω5 is
reachable from ω6, the heap of α3 does not contain ω5.

EXAMPLE 3. In Figure 2 we show different reference count tables,
CT 1 and CT 2. We thus have possible configurations:

K1 =(Heap1,Qs1,CT 1)

K2 =(Heap1,Qs2,CT 1)

K3 =(Heap1,Qs2,CT 2)

4.3 Well-formed Configurations
In this section we define when a configuration is well-formed.
Given that the actor only uses the values in its counter table to de-
cide when to garbage collect an object, the counter for that specific
object should be consistent with the reference count of other actors
with references to it and the messages in all the queues of a configu-
ration containing a reference to it. In other words, a configuration is
well-formed, if it satisfies the conditions introduced in the previous
section, an in addition:

WF3. If there is a message in some queue containing an address ι,
then the local reference count of ι is greater than zero.

WF4. If an actor α can reach an address which does not own,
then both the owner’s (local) reference count and α’s (foreign)
reference count for that object are greater than zero.

WF5. The sum of the local reference count and the increment-
decrement count for an address is always the same as the sum of
the total foreign reference count and total application message
count for that address.

WF6. For any prefix of any actor α’s queue, if we add to the
local reference count for ι the sum of weights of increment
and decrement messages for ι, and we subtract the number of
application messages that contain ι , the result is greater or
equal to zero.

Given this, we define five derived counts. We define now the first
four derived counts. For any address ι and a global configuration,
K, we define:

1. The local reference count of an address ι, LRCK(ι), gives the
reference count for ι in the counter table of its owner.

2. The foreign reference count of an address, FRCK(ι), is the sum
of the reference counts for ι from “outside”, that is, from all
actors different from the owner.

3. The increment-decrement count of an address, IDCK(ι), is the
sum of weighted references to ι in the current in-flight INC, DEC
messages in the queue of the owning actor.

4. The application message count of an address, AMCK(ι), is
the number of Pony-level messages which contain ι, addresses
owned by ι or addresses which are reachable from ι.

DEFINITION 3. For a configurationK, and address ι, we define the
functions

FRC , LRC , AMC : RunTimeCfg × Sall → N
IDC : RunTimeCfg × Sall → Z

as follows:

1. LRCK(ι) = RCK(Owner(ι), ι)
2. FRCK(ι) =

∑
α6=Owner(ι) RCK(α, ι)

3. IDCK(ι) =
∑
jWeight(ι,MessageK(Owner(ι), j))

4. AMCK(ι) = #{ (α, j) |MessageK(α, j) = APP(args)
∧ ι∈APP(args) }

DEFINITION 4. An address ι is contained in a Pony-level message
if and only if it is one of the arguments, or is the owner of one of
the arguments, or if it can be reached from one of the arguments,
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or is the owner of an object reachable from one of the arguments.

ι ∈ msg ⇔msg = APP(args) ∧ (∃ι′, ι′′.ι′ ∈ APP(args)∧
ι′′is reachable from ι′ ∧ (ι = ι′′ ∨ ι = Owner(ι′′)))

Note that every address is reachable from itself.

EXAMPLE 4. In the heap from Figure 1, we have that

• α1, α2, ω1, ω2, ω3 ∈ APP(ω3),
• α2, ω5 ∈ APP(ω5),
• α2, α3, ω5, ω6 ∈ APP(ω6),
• and α1, α2, ω7, ω8 ∈ APP(ω7).

DEFINITION 5. The weight of a message, regarding an address ι,
is given by the function

Weight : Addr ×Msg → Z

Weight(ι,msg) =


k if msg = INC(ι, k)

−k if msg = DEC(ι, k)

0 otherwise

EXAMPLE 5. Consider configuration K1 and in particular its ob-
ject ω1, then:

FRCK1(ω1) = 50 LRCK1(ω1) = 50

IDCK1(ω1) = 0 AMCK1(ω1) = 0

On the other hand, in K2, and considering in particular their
objects ω5, ω6, ω7 and ω8, we have that:

AMCK2(ω6) = AMCK2(ω5) = 2

AMCK2(ω7) = AMCK2(ω8) = 1

AMCK2(α1) = 1 AMCK2(α2) = 2 AMCK2(α3) = 2

and since we have no INC/DEC messages, ∀ι.IDCK2(ι) = 0.

We now define the fifth derived count, which we call pending
changes count, in short PCC . It sums the weights of INC and DEC
messages for ι in some queue and subtracts the number of pending
application messages containing ι in that queue. This last count
summed with the local reference count of ι will be the new local
reference count for ι in a configuration where all the messages of q
have been consumed by α.

DEFINITION 6. The pending changes counter of an address ι, in an
actor α, PCCK(ι, α, q), is defined as follows:

PCC : RunTimeCfg × Sall × Sact ×Msg? → Z

PCCK(ι, α, q) =
∑
j

Weight(ι, q(j))−{
0 if Owner(ι) 6= α

#{j | ι ∈ q(j)} otherwise

EXAMPLE 6. Consider queues, q1 = INC(ω2, 1), q2 = APP(ω2),
then we have PCC (ω2, α1, q1) = 1 and PCC (ω1, α1, q1) = 0.
Also, PCC (ω2, α1, q2) = PCC (ω1, α1, q2) = −1. Therefore,
PCC (ω2, α1, q) = 0 but PCC (ω1, α1, q) = −1.

We are now able to define when a configuration is well-formed.

DEFINITION 7. A configurationK is well formed iff ∀α, ι.∀q1, q2 ∈
Msg?

WF3. ι ⊆ MessageK(α, j) =⇒ LRCK(ι) > 0

WF4. ι ∈ HeapK(α) ∧ α 6= Owner(ι) =⇒
RCK(α, ι) > 0 ∧ LRCK(ι) > 0

WF5. LRCK(ι) + IDCK(ι) = FRCK(ι) +AMCK(ι)

WF6. q1 :: q2 = QueueK(α) =⇒
LRCK(ι) + PCCK(ι, α, q1) ≥ 0

DEFINITION 8. ι ⊆ msg⇔ ι ∈ msg ∨ msg = INC(ι, ) ∨ msg =
DEC(ι, )

The condition WF6 ensures that whenever consuming a mes-
sage makes the actor decrease its count for some owned address (as
we will see later), this count will not become negative.

EXAMPLE 7. It is easy to check that K1 is well-formed. On the
other hand, K2 is not a well-formed configuration as WF3 and
WF5 do not hold. WF3 does not hold because QueueK2

(α1) =
APP(ω6) even though RCK2(α3, ω6) = 0. With respect to WF5,
the AMC for the addresses α1, α2, α3, ω5, ω6, ω7, ω8 are no
longer 0. For instance:

AMCK2(ω7) = AMCK2(α1) = AMCK2(ω8) = 1

A possible way to change K2 in order to make it well-formed
could be by changing to K3, i.e, we replace CT 1 by CT 2.

5. Pony-ORCA: “killing” them safely
Pony-ORCA allows an actor to collect its own objects without
checking information from other actors or from any queue. That
is, an actor does not need to check any other heap, nor does it
need to examine any queue, including its own, in order to determine
whether an object is collectable or not. In this section we argue why
it is safe to collect objects under these conditions, and what actions
the protocol needs to perform in order to preserve well-formedness.

Pony-ORCA runs on top of Pony type system [6], which guar-
antees that there will be no race conditions even though it does not
use any locking or synchronisation mechanism other than the mes-
saging system.

In Section 5.1 we show why it is sound to collect any actor or
object whose local reference count is 0. In Section 5.2 we describe
what actions need to be taken when the configuration changes,
i.e. upon message send, message receipt, or addresses becoming
unreachable. We show a garbage collection scenario in Section 5.3.
In Section 5.4 we discuss the role of causality. And in Section 5.5
we discuss the absence of race conditions in the system.

5.1 Application to Garbage collection
Here we will argue why it is sound to garbage collect an actor or
object when its local reference count is 0. We will use the well-
formedness conditions from sections 4.2 and 4.3 to show that under
those circumstances the object or the actor is globally unreachable.

DEFINITION 9 (Globally unreachable objects and actors). An ad-
dress ι is globally unreachable if and only if it does not appear in
any actor’s heap (i.e. ∀α.ι /∈ HeapK(α)) and does not appear in
any Pony level message (i.e. ∀α, j.ι /∈ MessageK(α, j)).

5.1.1 Collecting objects
DEFINITION 10. An object ω is collectable by an actor α, iff

C1. α owns ω, i.e., α = Owner(ω).
C2. α has no path leading to ω, i.e., ω /∈ HeapK(α).
C3. α’s (local) reference count for ω is 0, i.e., RCK(α, ω) = 0
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These three requirements are local and therefore the actor can
garbage collect without needing to consult other actors or examine
any queues, including its own. We now argue that in any well-
formed configuration a collectable object is globally unreachable.

1. From C1, C3 and Definition 3 we know that the local reference
count for ω is 0, i.e. LRCK(ω) = 0.

2. From C1, C3 and WF3 we know that the counts for incre-
ment/decrement and application messages are 0, i.e., IDCK(ω) =
0 and AMCK(ω) = 0.

3. From 1, 2 and WF5 we know that the foreign reference count
of ω is 0, i.e. FRCK(ω) = 0.

4. From C2 we obtain that ω is not reachable from α.

5. From 3 and WF4 we obtain that ω is not reachable from any
further actor α′ 6= α.

6. From 2, we obtain that ω is not in any in-flight message.

Therefore, ω is globally unreachable.

5.1.2 Collecting actors
DEFINITION 11. An actor α is collectable, iff

C1. Its local reference count for itself is 0, i.e., RCK(α, α) = 0.
C2. Its queue is empty, i.e., QueueK(α) = ∅

The argument that a collectable actor is globally unreachable is
similar to that for objects with the additional consideration of WF2.
In addition, we can expand the protocol so as to collect cycles of
actors with the local reference count greater than 0 [16].

5.2 Maintaining well-formedness
Language level computations, such as application message sends
and receives, and dropping of references, affect the validity of the
well-formedness conditions from section 4.3. Therefore, we need
to take corrective actions. Here we outline what these actions are.

5.2.1 Sending a Pony level message
Consider that an actorα sends a message APP(args) and ι such that
ι ∈ APP(args). This action does not modify the heap, therefore
WF1, WF2 and WF4 are preserved. However it does affect the
values of AMC (ι), and thus affects validity of WF5. Therefore,
for all ι ∈ APP(args), the actor α performs the following updates:

1. If α = Owner(ι) then it will increase RC (α, ι) by 1.

2. If α 6= Owner(ι) then it will decrease RC (α, ι) by 1.

If decreasing the counter would make ι 0 then, before sending
the Pony message, an INC(ι, k + 1) message is sent to Owner(ι)
and RC (α, ι) is set to k, for some k > 0. Such an increment
message may be sent even if RC > 1, to allow future sends of
ι without requiring additional increment messages.

These actions restore WF5 and do not affect validity of WF3
and WF6.

5.2.2 Receiving a Pony level message
The actions taken to preserve the well-formedness of a configura-
tion are similar to those for sending a message containing ι, taking
into consideration that when a message is received, it is removed
from the queue. We consider an actor α that receives a message
APP(args). For all addresses ι such that ι ∈ APP(args) the receiv-
ing actor performs the following actions, which are essentially the
opposite to those in Section 5.2.1:

1. If α = Owner(ι) then it will decrease RC (α, ι) by 1.

2. If α 6= Owner(ι) then it will increase RC (α, ι) by 1.

The address ι is added to the heap of α. Validity of WF4
is trivially preserved in all four cases. Moreover, WF6 from the
previous configuration guarantees preservation of WF1 in the new
configuration.

5.2.3 Receiving an ORCA specific message
When an actor receives a message INC(ι, k) or DEC(ι, k) then, by
construction, it is the owner of ι. Therefore,

1. When α receives INC(ι, k), it increments RC (α, ι) by k.

2. When α receives DEC(ι, k), it decrements RC (α, ι) by k.

Condition WF6 guarantees that WF1 and WF6 are preserved.
The other conditions are not affected.

5.2.4 Tracing and collecting
Part of the protocol is the tracing mechanism that actors use to
determine whether its objects are reachable or not. We now show
the tracing algorithm step-by-step:

1. All owned objects are marked unreachable.

2. All unowned objects with a foreign reference count greater than
zero are marked as unreachable.

3. Tracing occurs from the actor’s fields only, marking objects
reachable, whether they are owned or not.

4. All owned objects with the local reference count greater than
zero are marked as reachable.

5. Owned objects that are locally unreachable and have LRC = 0
are collected.

6. Decrement messages are sent for unowned objects that are
unreachable, and their FRC is set to 0.

Soundness of step 5 has been discussed in Section 5.1. Step 6
trivially preserves WF1 and WF2. Moreover, when the actor sends
the decrement message, DEC(ι, k), where ι is the address to be
collected and k is the former reference count of the actor ι, both
FRC (ι) and LRC (ι) will decrease by k and WF5 is preserved.

5.3 A Garbage Collection Scenario
We will elucidate how the garbage collector works by means of
a scenario where α3 runs garbage collection on Heap1, counter
tableCT1. Then α2 runs garbage collection, followed by α1, which
again is followed by α2. In the end, we will have collected all the
globally inaccessible actors or objects, and we will be left with a
heap as in Heap2. The garbage collector considers an object or
actor as locally reachable from some actor α if there exists a path
to that object or actor from α. We explain this now in more detail:
1st Step: actor α3 performs garbage collection on heap Heap1

and counter table CT1. The references α2, α3, ω5, ω6 are lo-
cally unreachable. Since the actor owns ω6 and since ω6’s RC
entry is 0, it will collect ω6. It cannot collect α2 nor ω5, but it
will send to α2 a message to decrement its RC entry for α2 by
1, and its RC entry for ω5 by 30. As a result we will now have
RC (α3, α2)=0, and RC (α2, α2)=1, and RC (α2, ω5)=10. Then,
because RC (α3, α3)=0, actor α3 is collected, and its heap dis-
carded.
2nd Step: actor α2 performs garbage collection. The references
α1, ω1, ω2, ω3, ω5, ω7 and ω8 are locally unreachable. Of these
addresses, it owns ω3, ω5, and ω8. The RC entry for all three
objects is not 0; therefore they will not be collected, and the heap
stays unmodified. The actor will set its RC entry for α1, ω1, ω2,
and ω7 to 0, and will send to α1 a message to decrement its RC
entry forα1, ω1, ω2, and ω7 by 5, 50, 3, and 10. Whenα1 consumes
this message, the RC -table will look as follows:

CT 3 :
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α1 α2

α1 0 0
α2 1 1
ω3 10 10
ω5 10 10
ω8 10 10

3rd Step: actor α1 performs garbage collection. The references ω4,
ω5, ω7 and ω8 are locally inaccessible. Of these addresses, the ac-
tor owns ω4 and ω7, and as their RC entry is 0, both objects will be
collected. We will now have Heap(α1) = {α1, α2, ω1, ω2, ω3 }.
The actor will also send to α2 messages to decrement its RC
entry for ω5 and ω8 by 10 and 10. When this message is con-
sumed, we will have RC (α1, ω5) = 0 = RC (α1, ω8), and also
RC (α2, ω5) = 0 = RC (α2, ω8).
4th Step: actor α2 performs garbage collection. As the references
ω5, ω8 are locally inaccessible, and as their RC has value 0, the
actor will collect ω5, ω8. We now have Heap(α2) = {α2 }.

Provided that the actor α1 is not blocked, any further garbage
collection steps will make no difference, unless, of course, the
heaps or queues were to change. If the queue of α1 becomes empty
then it can be collected. Our heap will have the contents as in
Heap2. The contents of the RC -table is as in CT4, shown below.
CT 4 :

α1 α2

α1 0 0
α2 1 1
ω3 10 10

5.4 Causality
Causality is required in Pony-ORCA in order to maintain WF4 and
WF6. Consider namely a situation where an actor α whose RC
entry for an object ω is 1, sends to α′, the owner of ω, a message
containing ω, then ω becomes locally inaccessible in α and then
α performs garbage collection. In this case, α will send to α′ a
message INC(ω, k) for some value for k > 0, followed by APP(ω),
followed by DEC(ω, k − 1).

Causality considers that INC(ω, k) is a cause of APP(ω), and
that APP(ω) is a cause of DEC(ω, k − 1), and therefore guarantees
that they will arrive at α′ in that order. Therefore, if the value of
RC (α, ω) was k′, then upon consumption of these steps it would
become k′ + k, then k′ + k − 1, and k′, and thus stay positive.

However, if we allowed the messages to overtake each other,
and if we allowed the delivery to be APP(ω), DEC(ω, k − 1),
INC(ω, k) then the values would be k′ − 1 (thus possibly breaking
WF4), k′ − k + 1 (thus possibly breaking WF6) and k′.

5.5 Absence of race conditions in Pony-ORCA
To ensure the absence of race conditions we need to be certain
that tracing and garbage collection in one actor cannot interfere
with tracing, garbage collection, or normal behaviour in another
actor. We guarantee this through the type system of the underlying
language [6], which ensures that whenever an actor has a readable
path to an object, no other actor can write to it. Therefore, by
creating a different tracing function for each class according to
the read capabilities of each of the fields in that class, we ensure
that tracing does not interfere with any other actor’s activity. And
since garbage collection only removes globally unreachable actors
or objects, we also ensure that garbage collection does not interfere
with any other actor’s activity.

6. Discussions
The message overhead of our approach is low. Reference counts
(RC) are not tied to heap references but rather to messages, which

means no Garbage Collection (GC) messages are required for heap
mutation. When receiving a message, no GC messages are gener-
ated because the receiving actor can simply decrease its RC for
objects it owns and increase its RC for other actors and objects.
When sending a message, GC increment messages are only gener-
ated when the sending actor has an RC of 1 for a sent actor or object
it does not own; otherwise, the sending actor simply increases its
RC for objects it owns and decreases its RC for other actors and ob-
jects. In addition, when sending does require a GC increment mes-
sage, the cost is amortised by creating a large RC, allowing many
future sends of an object without additional GC increment mes-
sages. This is coupled with the ability to send GC increment mes-
sages that refer to many objects, which means that a message send
that requires GC increment messages generates at most one GC in-
crement message for any given actor, which also reduces message
overhead.

Because the disappearance of a reference from an actor’s reach-
able heap is detected only during GC, GC decrement messages are
generated lazily. These decrement messages are also combined, as
for GC increment messages, such that at most one GC decrement
message is generated for any given actor. This reduces the GC mes-
sage bounds from O(unreachable) to O(Owner(unreachable)).

Causal message delivery allows us to never require an acknowl-
edgement for a GC message. This means that there is no GC mes-
sage related latency due to requiring a round trip.

Our approach only runs a GC pass on an actor when that actor is
not executing a behaviour. As a result, GC only occurs when there
is no stack. This means there is no requirement for a stack map or
a stack crawler.

We do not require any form of read or write barrier [35]. This is
achieved by combining a data-race free type system with handling
all RC changes when sending and receiving messages.

While this does mean data structures are traced when they are
sent and received, it eliminates the need to treat objects with a local
reference count greater than as GC roots. Instead, such object are
simply marked as in-use without being traced. This is a key element
of the system: it allows such objects to be garbage collected safely
by the owning actor even when some other actor is in the process of
mutating them. This allows heaps to be garbage collected entirely
independently, as mutation in another actor does not affect GC. We
have not modelled this in our current paper, as we do not model the
tracing of structures, but will describe this in more detail in further
work.

The combination of having no stack when garbage collecting
and garbage collecting each actor’s heap independently means safe-
points [24] are not required. Any actor can GC its own heap without
waiting for a safepoint to be reached.

Independent actor heap collection functions as both a concur-
rent GC mechanism (actors can GC concurrently) and an incre-
mental GC mechanism (actors can GC separately). This allows op-
timisations to both the tracing algorithm and the memory allocator.

We use a mark-and-don’t-sweep collector [23] that keeps mark
bits, rather than pointers, in the heap data structure. By moving
the mark bit out of the object, object contents are never written
to during GC, and unreachable objects are never traced. This min-
imises cache pollution, eliminates page misses on unreachable ob-
jects, and reduces the trace phase to O(reachable) rather than
O(reachable + unreachable).

This approach also results in a memory allocator that works like
a bump allocator [23]. No best/first-fit search is required, and free
list maintenance is handled by page (or group of pages) rather than
by object. Memory allocation cost is amortised to the cost of a
single find-first-set bit operation.
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Figure 3. Actor creation performance

These optimisations are made possible because independent ac-
tor heap collection guarantees mutation doesn’t affect either tracing
or allocation semantics.

7. Conclusions and Further Work
Conclusion. Pony is a concurrent and distributed object-oriented,
actor-based programming language which supports (passive) ob-
jects. One of the features of Pony is its message-based garbage
collection mechanism. This allows the collection of dead actors,
as presented in [17]. We have presented the garbage collection
for passive objects in Pony. We formally define what constitutes a
runtime configuration, with respect to the data structures that the
garbage collector maintains, and in particular what constitutes a
well-formed configuration which allows the deallocation of passive
objects. Moreover, we informally describe how to keep a runtime
configuration consistent when certain operations are executed.

This protocol was implemented in the Pony compiler which
was benchmarked against other actor-model languages with the
CAF [13] benchmark suite [1] and against MPI with HPC Chal-
lenge LINPACK GUPS [2]. We now report the results of these ex-
periments taken from [6]. Benchmarking was done on a 12-core
2.3 GHz Opteron 6338P with 64 GB of memory across 2 NUMA
nodes. The results shown are the average of 100 runs.

The first benchmark, shown in Figure 3 shows the performance
of creating large numbers of actors. In particular, the performance
of garbage collecting the actors [17] and passive objects. It shows
better results then the other existing systems (except CAF which is
not garbage collected).

In Figure 4, we can see that the performance of a highly con-
tended mailbox, where additional cores tend to degrade perfor-
mance. The results of the third experience, illustrated in 5 shows
performance of a mixed case, where a heavy message load is com-
bined with brute force factorisation of large integers. The last fig-
ure 6 shows a benchmark that is not tailored for actors: we take the
GUPS benchmark from high-performance computing, which tests
random access memory subsystem performance, and demonstrate
that Pony’s implementation is significantly faster than the highly
optimised MPI implementation.

Further work. We plan to give a full formal model, including a
model of the heap and reachability, and proof of soundness. We
want to investigate in how far we can weaken the requirements
for causality, and applications to further language features such as
futures or promises.
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