
Deny Capabilities for Safe, Fast Actors

Abstract
Combining the actor-model with shared memory for per-
formance is efficient but can introduce data-races. Existing
approaches to static data-race freedom are based on unique-
ness and immutability, but lack flexibility and high perform-
ance implementations. Our approach, based on deny prop-
erties, allows reading, writing and traversing unique refer-
ences, introduces a new form of write uniqueness, and guar-
antees atomic behaviours.

1. Introduction
A current trend in programming languages is to combine
the actor-model [3] of concurrency with shared memory
to eliminate the requirement to copy all messages between
actors [4]. This is done to improve performance, but it results
in the possibility of data races.

Historically, programming languages have mostly relied
on dynamic approaches to prevent data races, using expli-
cit mechanisms, such as mutexes or semaphores, or implicit
mechanisms, such as lock inference or lock-free algorithms.
Ensuring data-race freedom statically [18] improves per-
formance by doing at compile-time what must otherwise be
done at run-time, and eliminates errors that can result from
incorrectly implementing locking or lock-free algorithms.

We wish to provide a type system that ensures data race
freedom statically for an actor-model language while also
providing a way to type actors themselves, in the mould of
active objects [13], and without placing any restrictions on
the structure of messages. In addition, the type system must
be amenable to a highly efficient implementation.

Existing approaches to static data race freedom use cap-
abilities [24] to describe what a reference is allowed to do. In
previous work, capabilities have been expressed as permis-
sions [10], fractional permissions [9], uniqueness [12], im-
mutability [26], and isolation [19] (a refinement of separate
uniqueness [22], which is a refinement of external unique-
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ness [12]). One issue with these systems is that what a ref-
erence is allowed to do must be used to reason about what
other references to the same object must be prevented from
doing.

We have taken a different approach and use capabilities
to describe what other aliases are denied by the existence of
a reference. We use a matrix of deny properties [17], with
notions such as isolation, mutability, and immutability all
being derived from these properties. What other references
to the same object can do is explicit rather than implied.

Other approaches have combined actors with data-race
freedom [13, 22, 27]. However, various useful patterns have
not been supported, e.g. traversing and modifying an isolated
data structure, or updating an object and then sending it in a
message while keeping read access to it. By taking a more
fundamental view of capabilities, we were able to develop
a more flexible type system that supports such patterns.
Moreover, we have developed a fast implementation, with
performance comparable or superior to the fastest, unsafe
systems.

The matrix of deny properties exposes two novel capabil-
ity types, tag and trn (transition). A tag capability allows
identity comparison and asynchronous method call, but does
not allow reading from or writing to the reference. We type
actors as tag, which allows them to be integrated into the ob-
ject type system and passed in messages. A trn capability is
a new form of uniqueness, write uniqueness, that describes
objects that can only be written to through a single reference,
but can be read from through many references.

We also extend viewpoint adaptation [16, 19] to apply to
every capability and introduce the concept of safe to write,
which, taken together, allow reading from and writing to
both unique objects and unique fields. We treat the types
of temporary identifiers differently from those of permanent
paths, which allows us to traverse unique structures, some-
thing that is not possible using other approaches [13, 19, 22].

In our system, an alias of a reference may have a different
capability from the initial reference. This addresses a key
issue in capability systems, namely that sub-typing is not
reflexive: an isolated type cannot be assigned to a field or
local variable unless the source reference is eliminated with
a technique such as destructive read or alias burying [8]. As
a part of this, we introduce unaliased types, which provide
static alias tracking without alias analysis.
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Our capabilities also provide a static region system
[21], requiring no additional annotation. The trn capabil-
ity provides a new form of write region, in which a region
boundary applies to write operations but not read operations.
In addition, actor behaviours are guaranteed to be atomic.

Contributions In this work, we present:

• Deny properties as a fundamental basis for uniqueness
and immutability.

• Combination with the actor paradigm.
• A new form of write uniqueness, trn.
• A capability, tag, that can be used to type actors.
• Viewpoint adaptation and safe-to-write semantics for

reading and writing unique types.
• Temporary identifiers to safely traverse unique structures.
• An alias operation in the type system to express non-

reflexive sub-typing.
• Unaliased types for static alias tracking.
• Static regions, including a new form of write region.
• A formal system.

Moreover, a native code compiler, runtime, and standard lib-
rary exist, which we use to demonstrate efficiency through a
comparison to existing actor-model languages and libraries,
as well as to MPI [20].

Outline We present our ideas in terms of a minimal actor-
model, object-oriented language. We present capabilities as
deny properties in sec. 2, a formal analysis of data race free
heaps in sec. 3, a formal type system in sec. 4, a syntax
in sec. 5, an operational semantics in sec. 6, a soundness
proof in sec. 7, related work in sec. 8, an implementation
and benchmarks in sec. 9, and conclusions and further work
in sec. 10.

2. Capabilities as deny properties
Rather than indicate which operations are allowed on a refer-
ence, our capabilities indicate what operations are denied on
other references to the same object. We distinguish what is
denied to the actor that holds a reference (local aliases) from
what is denied to all other actors (global aliases). Each cap-
ability stands for a pair of local and global deny properties.
These are shown in table 1. For example, ref denies global
aliases that can read from or write to the object, but it allows
local aliases to both read from and write to it.

No capability can deny local aliases that it allows glob-
ally. Therefore, some cells in the matrix are empty. For ex-
ample, there is no capability that denies local read and write
aliases, but denies only write aliases globally.

These deny properties are used to derive the operations
permitted on a reference. A reference that denies global
read and write aliases is safe to both read and write, i.e. is
mutable, since it guarantees that no other actor can read from

or write to the object. A reference that denies only global
write aliases is only safe to read, i.e. immutable, since it
guarantees no other actor will write to the object, but does
not guarantee no other actor will read from it. A reference
that allows all global aliases is not safe to either read or
write, i.e. it is opaque.

In addition, when the local deny properties and the global
deny properties of a reference are the same, the reference can
be safely sent as an argument to an asynchronous method
call to another actor, i.e. it is sendable. In other words, when
the local alias deny properties are the same as the global
alias deny properties, it does not matter which actor holds
the reference.

Short examples A ref reference to an object denies global
read/write aliases. As a result, it is safe to mutate the object,
since no other actor can read from it. This is effectively a
traditional object-oriented reference type.

If an actor has a box reference to an object, no other
reference can be used by other actors to write to that object.
This means that other actors may be able to read the object
and other references in the same actor may be able to write
to it (although not both: if the actor can write to the object,
other actors cannot read from it). Using box for immutability
allows a program to enforce read-only behaviour, similar to
const in C/C++. For example:
class List
fun box size1(): Int => ...
fun val size2(): Int => ...

Note that the receiver capability is specified after the
keyword fun. In size1, by indicating that the receiver has
box capability, we can be certain that this will not be
mutated when calculating its size (provided it has no mutable
reference to itself). In addition, immutability is transitive,
so no readable fields of this will be mutated either. Since
box denies global write aliases but does not deny local write
aliases, it is possible for this to be mutated through some
other reference if that reference is held by the same actor.
The box reference functions as a black box: the underlying
object may be mutable through another reference or it may
be immutable through any reference.

In size2, by indicating that the receiver has val capab-
ility, we make a stronger guarantee: we deny both local and
global write aliases. As a result, it is not possible for this
(and all its readable fields) to be mutated, regardless of other
aliases, nor will it be mutated at any time in the future.

Since a val reference has the same local and global deny
properties, it is possible to send a val reference to another
actor. A val reference is effectively a value type, similar to
values in functional languages.
actor Dataflow
be calculate1(list: List val) => ...
be calculate2(list: List box) // Not allowed

We use the keyword actor to indicate a class that can
have behaviours (asynchronous methods), and we use the
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Deny global read/write aliases Deny global write aliases Allow all global aliases

Deny local read/write aliases Isolated (iso)

Deny local write aliases Transition (trn) Value (val)

Allow all local aliases Reference (ref) Box (box) Tag (tag)

(Mutable) (Immutable) (Opaque)

Table 1. Capability matrix. Capabilities in italics are sendable.

keyword be to define behaviours. A behaviour is executed
asynchronously by the receiving actor, and a given actor
executes only one behaviour at a time, making behaviours
atomic. While executing a behaviour, the receiver sees itself
(i.e. this in the behaviour) as ref, and is able to freely read
from and write to its own fields. However, at the call-site, a
behaviour does not read from or write to the receiver, and so
a behaviour can be called on a tag receiver.

In calculate1, the list parameter is guaranteed to
have no local or global write aliases. As a result, it is safe
to share this object amongst actors. Denying global write
aliases means no actor can write to the object, regardless of
how many actors have a reference to list, making concur-
rent reads safe without copying, locks, or any other runtime
safety mechanism. In calculate2, a parameter of type
List box is rejected by the type system, as a box does not
deny local write aliases, making it unsafe to send a box to
another actor as the sending actor could retain a mutable
reference.

A tag reference has no deny properties, but it can be
used for asynchronous method calls, i.e. calling behaviours.
A capability with no permissions has appeared in previous
work [25], but without allowing asynchronous method calls.

actor Dataflow
be step(list: List val, flow: Dataflow tag) => ...

Here, we can call behaviours on flow, but we cannot read
or write the fields of flow. However, when flow executes
those behaviours asynchronously, it will see itself as a ref,
allowing it to mutate its own state. As such, tag allows us
to type actors themselves, thus integrating them into our
type system and allowing threads (in the form of actors)
to be treated as first-class values. In contrast to existing
systems [19], we formalise both dynamic thread creation
(actor constructors) and communicating actor graphs of any
shape (including cycles).

In order to pass mutable data between actors, we use iso
references. All mutable capabilities deny global read/write
aliases, allowing them to be written to because no other actor
can read from the object. An iso reference also denies local
read/write aliases, which means if the iso reference is sent
to another actor, we are guaranteed that the sending actor
no longer holds either read or write references to the object
sent.

actor Dataflow
be step(list: List iso, flow: Dataflow tag) => ...

Here, by passing an iso reference, a Dataflow actor
can mutate the list before sending it to the flow actor.
In order to do this, we must be certain the sending actor
does not retain a read or write alias. To this end we use
an aliasing type system wherein a newly created alias to
an object cannot violate the deny properties of the reference
being aliased. For example, a newly created alias of an iso

reference must be neither readable nor writeable (i.e. a tag).
To move deny properties, we use a destructive read.
actor Dataflow
be step(list: List iso, flow: Dataflow tag) =>

next.step(list) // Not allowed
next.step(list = null)

An assignment expression returns the previous value of
the left-hand side of an assignment rather than the value
of the right-hand side, making assignment equivalent to a
destructive read. Our type system introduces the concept of
unaliased types, annotated with ◦, in order to type values for
which an alias has been removed. Here, the destructive read
produces a List iso◦ which is aliased as a List iso when
the behaviour is called. The non-destructive read produces a
List iso which is aliased as a List tag, which is rejected
by the type system.

We distinguish between references which outlive the exe-
cution of an expression, and temporary identifiers which do
not. The use of temporary identifiers, combined with view-
point adaptation, allows reading from and writing to isolated
objects and isolated fields. Earlier work on isolation and ex-
ternal uniqueness systems [12, 19, 22] does not provide this.
actor Dataflow
be step(list1: List iso, list2: List iso,

next: Dataflow tag) =>
list1.next = (list2 = null)
next.step(list1 = null)

Here, we mutate list1 by assigning list2 to its next
field, maintaining isolation for both list1 and list1.next.
Similarly, we could read from or write to fields of list1.next,
since path traversal is allowed. This also allows calling meth-
ods on isolated references and fields of any path depth. Un-
safe reads are prevented by viewpoint adaptation, and unsafe
writes are prevented by safe-to-write rules. For example:
actor Dataflow
fun ref append(list1: List iso,

list2: List ref) =>
list1.next = list2 // Not allowed

Even if list1.next had the type List ref, this assign-
ment is rejected. As a result, isolated references form static
regions, wherein mutable references reachable by the iso
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reference can only be reached via the iso reference and im-
mutable references reachable by the iso reference are either
globally immutable or can only be reached via the iso ref-
erence.

A trn reference makes a novel guarantee: write unique-
ness without read uniqueness. By denying global read/write
aliases, but only denying local write aliases, it allows an ob-
ject to be written to only via the trn reference, but read from
via other aliases held by the same actor. This allows the ob-
ject to be mutable while still allowing it to transition to an
immutable capability in the future, in order to share it with
another actor.
class BookingManager

var accountant: Accountant
var all: Map[Date, Booking box]
var future: Map[Date, Booking trn]
fun ref close(date: Date) =>
accountant.account(future.remove(date))

actor Accountant
be account(booking: Booking val) => ...

Here1 we use a trn reference to model bookings that
remain mutable until they are closed and sent for account-
ing. All bookings are in the all map, but only mappings
that have not been closed out and are still mutable are
in the future map. When a booking is closed, it is re-
moved from the future map, returning a Booking trn◦,
which is aliased as a Booking trn, which is a subtype of
Booking val and can be shared with the Accountant actor.
Without a write unique type, this would require copying the
Booking.

A trn reference also forms a static region, but with a
looser guarantee than an iso reference. Mutable references
reachable by the trn reference can only be reached via the
trn reference, but immutable references, whether global or
local, are not contained in the resulting write region.

3. Consistent heap visibility
The core of the soundness of our approach is consistent
heap visibility, which requires that aliasing in the heap must
satisfy all the deny properties specified by the capabilities
attached to fields and variables. This leads to the notions
of local and global compatibility. Namely, two capabilities
are locally compatible κ ∼` κ

′ if neither has a local deny
property that prevents the existence of the other. Similarly,
they are globally compatible, κ ∼g κ′, if neither has a
global deny property that prevents the existence of the other.
These relationships are defined in table 2, eg. ref ∼` ref

but ref 6∼g ref. Both relations are symmetric.
In fig. 1, we show a diagrammatic representation of a

heap χ0 which contains actors α1 and α2, and objects
ι10...ι19. The top rectangles indicate stack frames, for ex-
ample χ0(α1) = (_, _, α1 · ϕ1 · ϕ2, _) and ϕ1(this) = ι10

1 In this example, we are using generic types and default capabilities (ref
for objects and tag for actors). While the full language supports these, we
will not formalise them here.

κ ∼ κ′ κ′

κ iso trn ref val box tag

iso `, g

trn ` `, g

ref ` ` `, g

val `, g `, g `, g

box ` ` `, g `, g `, g

tag `, g `, g `, g `, g `, g `, g

Table 2. Compatible capabilities.

Figure 1. A representation of part of a heap.

and ϕ2(t2) = ι18. The objects are in rounded boxes, and the
annotated arrows indicate the contents of their fields, e.g.
χ0(ι14, f10) = ι19. The annotations next to the field iden-
tifiers (ref, val, etc.) give types to the variables. Note that
α1 = ι10 and α2 = ι14.

For consistent heap visibility we require that different
paths originating from the same actor and pointing to the
same object have locally consistent visibility, while paths
originating from different actors and pointing to the same
object have globally consistent visibility. For example, in fig.
1 the path this.f1.f5.f8 starting at the first frame of actor
α1 and the path this.f10 at the first frame of actor α2 are
aliases, as they both reach object ι19. The first path sees ι19
as tag, while the second sees it as val. These are globally
compatible capabilities, and therefore these paths preserve
consistent heap visibility. On the other hand, if we added
a ref field to ι15, such that it pointed to ι19, the resulting
capabilities would not be globally compatible.

For the formal definition of consistent heap visibility, we
need notions of:
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Γ ∈ Env = LocalID → ExtType
∆ ∈ GlobalEnv = (ActorAddr × Integer)→ Env

p ∈ Path = (Integer × LocalID) · FieldID

Figure 2. Global environments and paths.

• ∆, χ, ι ` ι : ref, (0, this)

• ∆, χ, α ` ι : κ, (i, z) iff χ(α, (i · z)) = ι and
∆(α, i, z) = Sκφ and κ 6= tag

• ∆, χ, ι ` ι′ : κ I κ′, p · f iff ∆, χ, ι ` ι′′ : κ, p and
χ(ι′′, f) = ι′ and F(χ(ι′′) ↓1, f) = Sκ′ and κ I κ′ 6=
tag

• ∆, χ, ι ` ι′ : κ iff ∃p such that ∆, χ, ι ` ι′ : κ, p

Figure 3. Visibility.

• κ I κ′ =


κ′ if κ ∈ {iso, trn, ref}
val if κ = val ∧ κ′ = val

box if κ = box ∧ κ′ /∈ {iso, val, tag}
tag otherwise

• χ, α ` p1 · f ∼ p2 · f iff χ(α, p1) = χ(α, p2)

• χ, α ` (i, z) ∼ (i, z)

• χ, α ` ι ∈ p iff ∃p′, f̄ such that p = p′.f̄ and χ(α, p′) = ι

• χ(α, (i, z) · f) = χ(ϕi(z), f) where χ(α) ↓4= α · ϕ
• χ(α, (−i, xj) · f) = χ(vj , f) where χ(α) ↓3= µ and
µi = (_, v)

• Stable(∆, α, (i, z) · f) iff ∆(α, i, z) /∈ {iso, trn} or
z 6= t

Figure 4. Topological properties of paths.

1. Paths p and global environments ∆, which give types
to the local variables and temporaries in each frame or
message, as defined in fig. 2.

2. Path visibility ∆, χ, ι ` ι′ : κ, p, which says that the
object or actor ι sees the object or actor ι′ as capability κ
through path p, as defined in fig. 3.

3. Topological properties of paths, as defined in fig. 4.

Environments Γ map variables (i.e. local variables or tem-
poraries) to extended types and global environments, ∆
map actor addresses and integers to environments. In fig.
1, we indicate the types assigned to local variables through
the annotations. Thus, we have an implicit global environ-
ment ∆0, such that ∆0, χ0, α1 ` ι10 : ref, (1, this), and
∆0, χ0, α2 ` ι19 : val, (1, this) · f10.

To define path visibility, we need the notion of deep view-
point adaptation κ I κ′, which combines two capabilities as

WFV (∆, χ) iff
∀α, α′, ι, ι′ ∈ χ.∀κ, κ′, p, p′, t where Stable(∆, α, p) and
Stable(∆, α, p′)

1. If ∆, χ, α ` ι : κ and ∆, χ, α′ ` ι : κ′ and α 6= α′ then
κ ∼g κ

′

2. If ∆, χ, α ` ι : κ, p and ∆, χ, α ` ι : κ′, p′ then

(a) χ, α ` p ∼ p′ or

(b) κ ∼` κ
′

3. If ∆, χ, α ` ι : κ and ∆, χ, α ` ι′ : κ′, p′ and ∆, χ, ι `
ι′ : κ′′ and κ ∈ {iso, trn} then

(a) χ, α ` ι ∈ p′ or

(b) κ′′ ∈ {val, box} and κ′ ∼g val or

(c) κ′′ ∈ {iso, trn, ref} and κ ∼` κ
′

4. If ∆(α, i, t) = Sκ and κ ∈ {iso, trn} and χ(α, i, t) =
χ(α, p1) = ι then

(a) p1 = (i, t) or

(b) ∃ι′, κ′, p2, f such that

i. κ ≤ κ′

ii. κ′ ∈ {iso, trn}
iii. p1 = p2 · f
iv. ∆, χ, α ` ι′ : κ′, p2

v. ∆, χ, ι′ ` ι : κ, f

Figure 5. Well-formed visibility.

given in fig. 4. The definition ensures that κ I κ′ = κ′ if κ
is writeable (deep mutability), κ I κ′ = val if either κ or
κ′ is val (deep immutability) and box I κ′ = box unless
κ′ ∈ {iso, val, tag}. For example, iso I ref = ref.

The rules in fig. 3 say that an address sees itself as ref,
an actor sees a stack identifier as the capability provided by
∆, and an address sees another address as a deep viewpoint
adapted capability. Note that, for visibility, tag types are not
seen. Therefore, our example gives us:

• ∆0, χ0, α1 ` ι10 : ref, (1, this), but also
∆0, χ0, α1 ` ι10 : box, (1, this) · f1 · f2.

• ∆0, χ0, α2 ` ι19 : val, (1, this) · f10, but also
∆0, χ0, α1 ` ι19 : tag, (1, this) · f1 · f5 · f8.

In fig. 4, two paths are compatible if they share the last
step or they are the same identifier with no fields, an address
ι is in a path if some prefix of the path points to ι, and a
path is stable, Stable(∆, α, p), if its initial identifier is not a
unique temporary. For example, χ0, α2 ` (1, this) · f10 ∼
(1, y1) · f10. Also, Stable(∆0, α1, (1, this) · f1 · f4) and
¬Stable(∆0, α1, (2, t2) ·f9), even though the two paths are
aliases.

We define consistent heap visibility in fig. 5. We require:
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1. Global compatibility. Any two distinct actors that can
see the same address must see that address with globally
compatible capabilities.

2. Local compatibility. An actor that sees an address in
multiple ways must either see compatible paths or locally
compatible capabilities.

3. Containment properties of iso and trn. Given α that
sees ι as some unique κ and sees ι′ as κ′ via some stable
p′, and given that ι sees ι′ as κ′′:

(a) ι′ must be contained by ι, or

(b) neither ι nor α can write to ι′, or

(c) ι can write to ι′ and α sees ι′ as locally compatible
with κ.

4. Properties of unique temporary identifiers. Given t that
points to ι , some other path p1 to the same ι must be
either:

(a) also t or

(b) that path p1 must have a prefix p2 that sees some ι′

with a unique capability κ′ less precise than κ and ι′

must see ι as κ.

An implication of well-formed visibility is that if two vari-
ables (temporary or otherwise) are aliases and one of them
has unique type (aliased or unaliased) then 1) they come
from the same actor and 2) they are either the same vari-
able or they have locally compatible capabilities, cf. lemmas
8 and 9 in the appendix. Note that WFV .1 − 3 are con-
cerned with stable paths only, while WFV .4 is about un-
stable paths. In particular, WFV .4 allows a unique tempor-
ary to break the requirements from WFV .3 and alias some-
thing writeable from a unique.

The heap from fig. 1 has consistent visibility. The paths
(1, this) · f1 · f5 · f8 from α1 and (1, this) · f10 from α2

satisfy WFV .1 , while (1, x1) · f4 from α1 and (2, this)
from α1 satisfy WFV .2 and WFV .3 . On the other hand,
the temporary (2, t2) is not stable, and therefore not restric-
ted by WFV .2 or WFV .3 , but does adhere to WFV .4 .
Finally, the assignment this.f1.f5.f6 = this.f1.f5.f7
would break WFV .2 , while setting t2 to point to ι15 would
break WFV .4 .

4. Type system
The type system has the format Γ ` e : ET and is defined in
fig. 6. The following aspects required special attention:

1. The treatment of operations which discard aliases.

2. The distinction between operations which introduce
stable aliases vs. those which create only temporary ali-
ases.

3. Capabilities when accessing fields.

4. Capability recovery.

5. The treatment of actors.

Operations which discard aliases Assignment operations
discard aliases, as they return the previous value of the left-
hand side (ASNLOCAL and ASNFIELD) after overwriting
it. The fact that an alias has been discarded is important
in the cases where the capability is unique (iso or trn).
We indicate this through the unaliased annotation ◦, which
expresses that there is no stable path to the corresponding
object.

For example, the assignment this.f1.f5 = null in the
first frame of actor α1 in fig. 1 would return a new temporary
which would be the unique reference to ι16. The type of this
expression would be S iso◦ for some S. Because unaliasing
is of importance only when the underlying capability is iso,
trn or ref, we have defined the unaliasing operation U ,
which takes a type and returns an extended type, cf. def. 1.
This operator is used whenever an alias is discarded (cf, T-
ASNLOCAL, T-ASNFLD).

Object constructors also introduce unaliased values, as
indicated in the rule T-CTOR. Also, null has no stable alias,
and thus is unaliased, cf. T-NULL.

Distinction between introducing stable or temporary ali-
ases Some operations introduce stable aliases (eg. assign-
ment), while others introduce only unstable ones (eg. field
read). We express the distinction in the type system through
the difference between the type judgments Γ ` e : ET and
the aliased type judgment Γ `A e : ET. For example, when
assigning an expression e to a variable x, the right-hand
side is typed in the judgment `A (cf. T-ASNLOCAL). The
aliasing judgement is also applied to the receiver and ar-
guments of method calls and asynchronous behaviours (T-
SYNC and T-ASYNC), the arguments to object and actor
constructors (T-CTOR and T-ATOR), and the right-hand side
of a field assignment (T-ASNFLD).

The aliased type judgment Γ `A e : ET is defined in
terms of the unaliased type judgment Γ ` e : ET′, where
ET has to be a super-type of the aliased version of ET′,
i.e. A(ET′) ≤ ET. The operation A(ET) gives the type
that an alias of ET would have. When aliasing an unaliased
type there is no previous alias to consider, and therefore
A(Sκ◦) = Sκ. For other types, the result must be the
minimal super-type of the underlying type which is locally
compatible with it, i.e.A(Sκ) = Sκ′ where κ′ ≤ A(κ′) and
A(κ′) ∼` κ

′.

Definition 1. Aliasing and unaliasing.

• A(Sκ◦) = Sκ

• A(Sκ) =


S tag iff κ = iso

S box iff κ = trn

Sκ otherwise

• U(Sκ) =

{
Sκ◦ iff κ ∈ {iso, trn, ref}
Sκ otherwise
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x ∈ Γ

Γ ` x :Γ(x)
T-LOCAL

Γ ` e : Sκ F(S, f) = S′ κ′

Γ ` e.f : S′ κ . κ′
T-FLD

S ∈ P

Γ ` null : S iso◦
T-NULL

Γ ` e : ET Γ ` e′ : ET′

Γ ` e; e′ : ET′
T-SEQ

Γ(x) = Sκ Γ `A e : Sκ

Γ ` x = e : U(Sκ)
T-ASNLOCAL

Γ ` e : Sκ Γ `A e′ : S′ κ′

F(S, f) = S′ κ′′ κ′ ≤ κ′′ ` κ / κ′∨ ` κ / κ′′

Γ ` e.f = e′ : U(S′ κ . κ′′)
T-ASNFLD

M(S, m) = (T, x : T, e, ET)
Γ `A e : T Γ `A ei : Ti

Γ ` e.m(e) : ET
T-SYNC

M(A, b) = (A ref, x : T, e, A tag)
Γ `A e : A tag Γ `A ei : Ti

Γ ` e.b(e) : A tag
T-ASYNC

M(C, k) = (C ref, x : T, e, C ref◦)
Γ `A ei : Ti

Γ ` C.k(e) : C ref◦
T-CTOR

M(A, k) = (A ref, x : T, e, A tag)
Γ `A ei : Ti

Γ ` A.k(e) : A tag
T-ATOR

Γ ` e : ET′ A(ET′) ≤ T

Γ `A e : T
T-ALIAS

Γ\{x | ¬Sendable(Γ(x))} ` e : ET

Γ ` recover e :R(ET)
T-REC

Γ ` e : Sκ◦
Γ ` e : Sκ

T-SUBSUME

Figure 6. Expression typing

ET ≤ ET′′ ET′′ ≤ ET′

ET ≤ ET′ Sκ◦ ≤ Sκ

κ ≤ κ′

Sκ ≤ Sκ′

iso ≤ trn ≤ {ref, val} ≤ box ≤ tag

Sendable(T) iff T = Sκ ∧ κ ∈ {iso, val, tag}

Figure 7. Sub-types and sendable types.

Thus, through a combination of aliasing and unaliasing,
we can obtain unique types when needed. For example, for x
and y of type C trn, the assignment x = y is illegal, because
the aliased type of y is C box and C box 6≤ C trn. However,
the assignment x = (y = null) is legal, because the type of
y = null is C trn◦, and the alias of C trn◦ is C trn.

Capabilities at field read When reading a field f from an
object ι we obtain a temporary. The capability of this tem-
porary must be a combination of κ, the capability of the path
leading to ι, and κ′, the capability with which ι sees the field.
We express this through the operator ., defined in fig. 3. This
operator is less precise thanI, i.e. κ I κ′ ≤ κ.κ′. The new
temporaries introduced must preserve well-formed heap vis-
ibility, in particular WFV .4 . These rules forbid temporary
aliases to trn or ref fields of an iso, and therefore we ob-
tain iso . trn = iso . ref = tag. Also, they require that
any aliases to ref fields of a trn are box, including tempor-
ary references. Therefore, trn . ref = box.

κ . κ′ κ′

κ iso trn ref val box tag

iso iso tag tag val tag tag

trn iso trn box val box tag

ref iso trn ref val box tag

val val val val val val tag

box tag box box val box tag

tag ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Table 3. Viewpoint adaptation.

κ / κ′ κ′

κ iso trn ref val box tag

iso
√ √ √

trn
√ √ √ √

ref
√ √ √ √ √ √

val

box

tag

Table 4. Safe to write.
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Thus, taking our earlier example, the type of this.f1.f5
is iso, while the type of this.f1.f5.f6 is tag. Com-
pare this with visibility, which gives ∆0, χ0α1 ` ι17 :
ref, (1, this) · f1 · f5 · f6.

Storing a reference into a field of an object ι is legal if the
type of the reference is both a subtype of the type of the field
and also safe to write into the origin. The relation κ / κ′,
as defined in fig. 4, expresses which reference capabilities
κ′ are safe to write into origin κ. When writing to a field
through an origin, no alias of the object being written may
exist that would violate the deny properties of the origin.

Notice, that these rules allow us to write to fields which
are not readable, i.e. of type tag. For example, the field
read this.f1.f5.f6 has type tag, but the field assign-
ment this.f1.f5.f6 = (x1 = null) is legal even though
the field f6 is ref and ref is not safe to write into iso.
Namely, x1 = null has type iso◦, and aliased type iso,
and iso ≤ ref, and iso is safe to write to iso.

Capability recovery The evaluation of an expression which
has access only to sendable variables (i.e. iso, val, and
tag) will return a sendable type. This is an extension of
previous work on recovery [19], which is related to work on
borrowing [22]. We introduce such expressions through the
recover keyword (T-REC). The return type of recover e
is the sendable version of the return type of e. For example,
if e has type ref, then recover e has type iso, and if e has
type ref◦, then recover e has type iso◦.

Definition 2. Capability recovery

R(Sκφ) =


S isoφ iff κ ∈ {iso, trn, ref}
S val iff κ ∈ {val, box}
S tag otherwise

R(ET) is the sendable capability that retains the same
local read and/or write guarantee. In other words, a writeable
capability can become iso and a readable capability can
become val.

The treatment of actors Actors introduce the question of
who may read or update the actor’s fields, the possibility
of synchronous calls on actors, and the type required for
asynchronous calls.

Field read and write requires that the actor should not be
seen as a tag. However, since an actor sees itself as a ref

(by fig. 3), any other actor will see it as tag (by WFV .1 ).
Therefore no other actor except the current one will be al-
lowed to observe an actor’s fields - a nice consequence of
the type system.

By a similar argument, because the actor sees itself as
ref, by WFV .2 , any other paths that point to it will do so as
box, ref, or tag, and this means that the actor may call syn-
chronous methods on itself, provided that the receiver cap-
ability of the method declaration is ref or box. Interestingly,
for asynchronous (behaviour) calls, the receiving actor only
needs to be seen as a tag (T-ASYNC), even though the re-

P ∈ Program ::= CT AT

CT ∈ ClassDef ::= class C F K M

AT ∈ ActorDef ::= actor A F K M B

S ∈ TypeID ::= A | C
T ∈ Type ::= Sκ
ET ∈ ExtType ::= T | S (iso | trn | ref)◦
F ∈ Field ::= var f : T
K ∈ Ctor ::= new k(x : T)⇒ e

M ∈ Func ::= funκ m(x : T) : ET⇒ e

B ∈ Behv ::= be b(x : T)⇒ e

n ∈ MethodID ::= k | m | b
κ ∈ Cap ::= iso | trn | ref | val | box | tag
e ∈ Expr ::= this | x | x = e | null | e; e

| e.f | e.f = e | recover e
| e.m(e) | e.b(e) | S.k(e)

E[·] ∈ ExprHole ::= x = E[·] | E[·]; e | (E[·]) | E[·].f
| e.f = E[·] | E[·].f = z | E[·].n(z)
| e.n(z, E[·], e) | recover E[·]

Figure 8. Syntax

C ∈ ClassID k ∈ CtorID
A ∈ ActorID m ∈ FuncID
f ∈ FieldID b ∈ BehvID

this, x ∈ SourceID n ∈ CtorID ∪ BehvID
t ∈ TempID y, z ∈ LocalID

Figure 9. Identifiers

ceiver capability in the behaviour is ref. This is in contrast
to method calls, where the receiver object/actor has to be
seen as a capability which is a subtype of the receiver cap-
ability in the method declaration. The looser requirement for
actors is sound, because, as discussed above, no other actor
may obtain access to the actor’s state.

Further observations about the type system In contrast to
many type systems, typing is not covariant with the capabil-
ities assigned to variables or fields. That is, Γ ` e : ET and
Γ(x) = Sκ and κ′ ≤ κ does not imply that Γ[x 7→ Sκ′] `
e : ET′ for some type ET′. For example, take class C with a
field f of type C ref, and Γ such that Γ(x) = C ref and
Γ′ = Γ[x 7→ C trn]. Then x.f = x is type correct in Γ but
not in Γ′.

5. Syntax
In fig. 8 we present the syntax. We support actors in the
mould of active objects, introduced with the keyword actor.
These can have both synchronous methods (functions, intro-
duced through the keyword fun) and asynchronous methods
(behaviours, introduced through the keyword be) as well as
named constructors (introduced through the keyword new).
Passive objects (introduced through the keyword class)
have only synchronous methods (functions) and construct-
ors. We use the term method and identifier n to refer to con-
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χ ∈ Heap = Addr → (Actor ∨Object)
σ ∈ Stack = ActorAddr · Frame
ϕ ∈ Frame = MethodID × (LocalID → Value)

×ExprHole
LocalID = SourceID ∪ TempID

v ∈ Value = Addr ∪ {null}
ι ∈ Addr = ActorAddr ∪ObjectAddr
α ∈ ActorAddr
ω ∈ ObjectAddr

Actor = ActorID × (FieldID → Value)
×Message × Stack × Expr

Object = ClassID × (FieldID → Value)

µ ∈ Message = MethodID ×Value

Figure 10. Runtime entities

structors, functions, and behaviours. The syntax of expres-
sions is standard with the exception of the recover keyword
- more in sec. 4.

The novel element of the syntax is the inclusion of cap-
ability annotations κ on types and functions, where:
κ ∈ {iso, trn, ref, val, box, tag}
These capabilities are the foundation of our type system.
Types consist of a class or actor identifier S followed

by a capability κ. In addition, extended types ET can be
unaliased, ◦. An unaliased type is created with constructors
and destructive reads - more in sec. 4.

The over-bar notation indicates a sequence of elements
such as F, with the convention that the nth element is re-
ferred to as Fn. Similarly, x : T indicates a pairwise sequence
of identifiers and types. To reduce notation, we assume a
fixed program P.

6. Operational semantics
The operational semantics has the shape χ → χ′, where
χ, χ′ are heaps mapping object addresses ω to their class
identifier and their fields, and actor addresses α to their actor
identifier, their fields, their message queue, their stack, and
the next expression to execute. Runtime entities are defined
in fig. 10. We use some shorthand notation for clarity - more
in app. fig. 17.

We use x to indicate a source identifier, t to indicate a
temporary identifier, and y and z to indicate identifiers which
may be either.

A call stack consists of an actor address α followed by
a sequence of frames ϕ. A frame consists of the method
identifier, a mapping of its parameters to values, and an
expression hole. The latter is the continuation of the caller
and will be executed by the previous frame when the current
activation terminates.

The auxiliary judgement χ, σ, e  χ′, σ′, e′ expresses
local execution within a single actor. M and F return
method and field declarations. They are defined in app. sec.
A.

Local execution is defined in fig. 11. EXPRHOLE allows
execution to propagate to the context. FLD, NULL, and SEQ
are as expected.

ASNLOCAL and ASNFLD combine assignment with a
destructive read, returning the previous value of the left-hand
side. The resulting value is unaliased: while there may be
other paths pointing to the value in the program, this one
no longer does. In effect, one alias to the value has been
discarded. The existence of unaliased values will be used
in the type system, where T-ASNLOCAL and T-ASNFIELD
both return an unaliased type, as explained in sec. 4.

SYNC and RETURN describe synchronous method call
and return. In SYNC, method m is called on object or actor ι.
The method parameters x and the method body e are looked
up using the method m and the type S of ι from the heap.
A new frame is pushed on to the stack, consisting of m, the
address of the receiver, the values of the arguments, and the
continuation. In RETURN, the topmost frame is popped from
the stack and execution continues.

ASYNC and BEHAVE describe asynchronous method
calls and execution. In ASYNC, a message consisting of
the behaviour identifier b and the arguments is appended to
the receiver’s message queue. In BEHAVE, an actor with an
empty call stack and a non-empty message queue removes
the oldest message from the queue, and pushes a new frame
on the stack.

CTOR and ATOR describe the construction of new objects
and actors. In CTOR, a new address ω is allocated on the
heap and the fields are initialised to null. A new frame is
pushed on the stack in the same way as for SYNC. In ATOR,
instead of pushing a new frame on the stack, the new actor’s
queue is initialised with a constructor message containing
the constructor identifier k and the arguments. The first local
execution rule for a new actor will be BEHAVE, which will
execute the body of the constructor k.

REC is a no-op in the operational semantics, but has an
impact in the type system, where T-REC affects the capabil-
ities of the result of the expression.

EXCEPT is unusual in that it allows dereferencing null .
We use it here simply to ignore the uninteresting (for our
current purposes) behaviour of null .

GLOBAL defines global execution and says that if an actor
can execute, then its stack and next expression to execute
will be updated.

7. Soundness
A heap χ is well-formed as defined in fig. 12 if all objects in
the heap are well-formed, all actors in the heap are well-
formed, and visibility is well-formed. An object is well-
formed if all its fields belong to the type defined in the
object’s class. An actor is well-formed if its stack frames and
messages are well-formed. A stack frame is well-formed if
1) its receiver and arguments are well-formed, 2) all local
identifiers are well-formed, 3) if it is the only stack frame,
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χ, σ · ϕ, e χ′, σ · ϕ′, e′

χ, σ · ϕ, E[e] χ′, σ · ϕ′, E[e′]
EXPRHOLE

t /∈ ϕ ι = ϕ(z) ϕ′ = ϕ[t 7→ χ(ι, f)]

χ, σ · ϕ, z.f χ, σ · ϕ′, t
FLD

t /∈ ϕ ϕ′ = ϕ[t 7→ null ]

χ, σ · ϕ, null χ, σ · ϕ′, t
NULL

χ, σ, z; e χ, σ, e
SEQ

t /∈ ϕ ϕ′ = ϕ[x 7→ ϕ(z), t 7→ ϕ(x)]

χ, σ · ϕ, x = z χ, σ · ϕ′, t
ASNLOCAL

t /∈ ϕ ι = ϕ(z) ϕ′ = ϕ[t 7→ χ(ι, f)]
χ′ = χ[ϕ(z), f 7→ ϕ(y)]

χ, σ · ϕ, z.f = y χ′, σ · ϕ′, t
ASNFLD

ι = ϕ(z) M(χ(ι) ↓1, m) = (_, x : _, e, _)
ϕ′ = (m, [this 7→ ι, x 7→ ϕ(y)], E[·])
χ, σ · ϕ, E[z.m(y)] χ, σ · ϕ · ϕ′, e

SYNC

t /∈ ϕ ι = ϕ′(z)
ϕ′ ↓3= E[·] ϕ′′ = ϕ[t 7→ ι]

χ, σ · ϕ · ϕ′, z χ, σ · ϕ′′, E[t]
RETURN

α = ϕ(z) χ(α) ↓3= µ

χ, σ · ϕ, z.b(y) χ[α 7→ µ · (b, ϕ(y)], σ · ϕ, z
ASYNC

A = χ(α) ↓1 (n, v) · µ = χ(α) ↓3
M(A, n) = (_, x : _, e, _)

ϕ = (n, [this 7→ α, x 7→ v], ·)
χ, α, ε χ[α 7→ µ], α · ϕ, e

BEHAVE

ω 6∈ dom(χ) f = Fs(C)
M(C, k) = (_, x : _, e, _)
χ′ = χ[ω 7→ (C, f 7→ null)]

ϕ′ = (k, [this 7→ ω, x 7→ ϕ(y)], E[·])
χ, σ · ϕ, E[C.k(y)] χ′, σ · ϕ · ϕ′, e

CTOR

α 6∈ dom(χ) f = Fs(A)
t /∈ ϕ ϕ′ = ϕ[t 7→ α]

χ′ = χ[α 7→ (A, f 7→ null , (k, ϕ(y), α, ε)]

χ, σ · ϕ, A.k(y) χ′, σ · ϕ′, t
ATOR

χ, σ, e χ′, σ′, e′

χ, σ, recover e χ′, σ′, recover e′
REC1

t /∈ ϕ ϕ′ = ϕ[t 7→ ϕ(z)]

χ, σ, recover z χ, σ, t
REC2

t /∈ ϕ ϕ(z) = null ϕ′ = ϕ[t 7→ null ]

χ, σ · ϕ, z.f χ, σ · ϕ′, t
χ, σ · ϕ, z.f = y χ, σ · ϕ′, t
χ, σ · ϕ, z.n(y) χ, σ · ϕ′, t

EXCEPT
χ, χ(α) ↓4, χ(α) ↓5 χ′, σ, e

χ→ χ′[α 7→ (σ, e)]
GLOBAL

Figure 11. Execution.

it has no continuation and the receiver is the actor, 4) if it
is not the only stack frame, its return value and temporary
identifiers are well-formed wrt. the previous frame, and 5)
if it is the last frame, temporary identifiers are well-formed
and the expression has the expected type.

Treatment of temporaries Temporaries with unique cap-
abilities, iso or trn, are fragile: on the one hand they may
break the encapsulation of other iso or trn objects. For ex-
ample, because iso . iso = iso, a field read (FLD) may
return a temporary pointing within the encapsulation of iso.
On the other hand, an assignment to another field or variable
might break their encapsulation.

We require that in a frame, no more than one temporary
has an iso or trn capability, and this temporary appears
on a field assignment or a field read. We also require that
any temporaries that appear within a recover expression are
either inaccessible from any frame or are only accessible
through sendable local variables.

Definition 3. Well-formed temporaries. WFT (∆, χ, α, i, e)
iff:

1. No temporary appears more than once in e.
2. If T (Γ) 6= ∅, then e ≡ E[e′], where e′ is a redex of

the form t.f or t.f = y, and T (Γ) = {t}, where Γ =
∆(α, i) and T (Γ) ≡ {t |Γ(t) = Sκ∧κ ∈ {iso, trn}}.

3. If e = E[recover e′] and ∆, χ, α ` ι : _, (i, t) and
∆, χ, α ` ι : κ′, (i′, z) · f where t is free in e′then either
Sendable(∆(α, i′, z)) or (i, z) = (i′, t′) and z is not free
in E[·].

The requirements above do not apply to unaliased unique
capabilities, e.g. iso◦, or trn◦. When proving type preser-
vation, we maintain the property
WFT (∆, χ, α, i, e) by turning the types of temporaries with
unique capabilities κ ∈ {iso, trn} into their aliases, A(κ),
as soon as the temporary is no longer involved in field reads
or updates in the current redex. The type of the expression
is preserved despite this change, because the type rules from
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• ∆ ` χ� iff ∀ι, α ∈ dom(χ), χ ` ι� and ∆, χ ` α� and
WFV (∆, χ)

• χ ` ι� iff ∀f, F(χ(ι) ↓1, f) = Sκ implies χ(ι, f) ↓1= S

• ∆, χ ` α� iff χ(α) = (_, _, µ̄, α ·ϕ, e) and ∀i, ∆, χ, α `
ϕi, i� and ∀j, ∆, χ ` µj , j�

• ∆, χ, α ` ϕ, i� iff given ϕ = (m, _, E[·]) andM(ϕ, χ) =
(T, x : T, _, ET) and ∆(α, i) = Γ then

1. Γ(this) = T and ∀j ∈ 1..|T|.Γ(xj) = Tj

2. ∀z ∈ ϕ, Γ(z) = Sκφ and χ(ϕ(z)) ↓1= S

3. If i = 1 then E[·] = · and ϕ(this) = α

4. If i > 1, given χ(α) ↓4= α · ϕ and Γ′ = ∆(α, i− 1)
and t /∈ Γ′ and Γ′′ = Γ′[t 7→ ET] then

(a) Γ′′ ` E[t] :M(ϕi−1, χ) ↓4
(b) WFT (∆[(α, i) 7→ Γ′′], χ, α, i, E[t])

5. If i = |χ(α) ↓4 | then WFT (∆, χ, α, i, e) and Γ `
e : ET

• ∆, χ, α ` µ, i� iff given µ = (b, v) and vj = ι and
M(χ(α) ↓1, b) = (_, x : Sκ, _, _) and ∆(α,−i) = Γ
then

1. χ(ι) ↓1= Sj

2. Γ(xj) = Sκ

Figure 12. Well-formed heaps.

fig. 6 require the alias of a type (. . . `A . . .) in all such
situations. This is explained further in lemma 10 in the ap-
pendix.

Theorem 1. A well-formed heap ensures data race freedom.
∀∆, χ, α1, α2, f, g , if

1. ∆ ` χ�, and
2. χ(α1) = (_, _, σ1, _, E1[z1.f = z3]), and
3. χ(α2) = (_, _, σ2, _, E2[z2.g])

then χ(α1, |σ1| · z1) 6= χ(α2, |σ2| · z2).

Proof. Follows from the type system and the application of
WFV .1 (global consistency).

Theorem 2. Well-formedness is preserved.
∀∆, χ, if ∆ ` χ� and χ→ χ′ then ∃∆′.∆′ ` χ′�.

Proof. Follows from lemmas 17-20 in the appendix.

Atomicity Because the type of any entity does not change,
any readable reference is always readable, and so guarantees
no other actor can write to it. This holds not just for methods,
but for behaviours. As a result, theorem 1 guarantees that
behaviours are atomic, a stronger guarantee than data-race
freedom. In the full language, where null is absent, this is
achieved without the null pointer exceptions that destructive

read otherwise introduces. We will provide a full argument
for atomicity and its importance in reasoning about actor-
model programming in future work.

8. Related Work
Linear types [29] provide the basis for uniqueness type sys-
tems. The insight that a type that is usable only once allows
for mutation in a pure functional language leads directly to
using linearity for concurrency-safe mutation [5]. A combin-
ation of unique pointers and ownership types [14] is used in
PRFJ [7] to accomplish this.

In [10], a set of capabilities and exclusive capabilities, in-
cluding identity, is used to build a uniqueness and immutab-
ility type system. Several important concepts are articulated
in this work, including the notion that exclusive capabilities
deny the existence of capabilities through other aliases, the
use of destructive reads to manage capabilities, and the ex-
istence of the null capability (similar but not identical to tag

in our system).
Fractional permissions [9] encode uniqueness and im-

mutability as well as providing implicit static alias tracking
without alias analysis.

Relaxing the notion of uniqueness to external uniqueness
[12] allows for richer and more complex data structures
to be simply encoded while maintaining all of the useful
properties of linear types. In the same work, the concept of
converting an externally unique reference to an immutable
reference is developed.

Using ownership types to express immutability at the
object and reference level in OIGJ [30], rather than at the
class level, allows immutable references to objects of any
type.

In Kilim [27], tree-structured messages are used to com-
bine work on uniqueness with zero-copy messages between
actors. While this is a significant restriction, the combination
of actor-model concurrency, uniqueness, immutability and
destructive read semantics is powerful. External uniqueness
has also been extended to cover actor-model concurrency
[13], providing a richer type system without tree-structure
requirements. In [28], access permissions are combined with
data flow analysis for implicit concurrency, which is in some
sense the inverse of actor-model concurrency.

In [19], capabilities combined with viewpoint adaptation
and recovery build a powerful data race free type system
with significant usability advantages for the programmer.
In addition, external uniqueness is relaxed even further to
isolation, where immutable portions of an isolated object can
be aliased externally.

2 Kilim messages are data-race free but the rest of Java is not.
3 The proposed system is data-race free but the rest of Scala is not.
4 Rust uses atomic reference counts and read-writer locks to prevent data
races.
5 Scala has types that are immutable by design, but cannot annotate refer-
ences to mutable types as immutable.
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Our Work Gordon Æminium DPJ Kilim Haller Scala Erlang Rust

Zero-copy
√ √ √ √ √ √ √ √

Data-race free
√ √ √ √ √2 √3 √ √

Statically data-race free
√ √ √ √ √ √ 4

Non-tree messages
√ √ √ √ √ √

Read unique (iso)
√ √ √ √ √

Write unique (trn)
√

Mutability (ref)
√ √ √ √ √ √ √ √

Immutability (val)
√ √ √ √ 5 √ √

Cyclic immutability
√ √

Identity (tag)
√ 6

Destructive read
√ √ √ √ √

Recovery
√ √

Using uniques (iso . x)
√

Actors
√ √ √ √ √

Formal proof
√ √ √ √ √ √

Native compilation
√ √

Table 5. Feature comparison.

In [6], a type and effect system for deterministic se-
mantics is provided. This is a powerful system, but does not
provide the unbounded non-deterministic semantics avail-
able in the actor-model.

In Rust [23], atomic reference counts, mutexes, allow
properties, and ownership types are combined to achieve
data race freedom. The use of both run-time and compile-
time methods, and the addition of an unsafe module that
can violate the type system, is an interesting compromise
approach.

Our work is built on a deny properties [17] model instead
of a permissions or fractional permissions model. We show
that the type annotations used in related work are all expres-
sions of these deny properties, and that additional annota-
tions exist (particularly trn and the use of tag for typing
actors). We extend viewpoint adaptation and add our concept
of safe-to-write, allowing direct manipulation of isolated
types without recovery. Our use of tag with the actor-model
gives us a copy-less, lock-less operational semantics.

In table 5, we summarise some features of our work
and compare with those in Gordon et al. [19], Æminium
[28], Deterministic Parallel Java [6], Kilim [27], Haller and
Odersky [22], Scala, Erlang, and Rust [23].

6 A version of identity, none, appears in [25].

9. Implementation and benchmarking
We have implemented a native code compiler using our
type system and a custom actor-model runtime, including
the scheduler, memory allocator, garbage collector, message
queues, etc. We have implemented large portions of a stand-
ard library and several real world data analytics programs.
Our experience so far leads us to believe our capabilities
system is expressive and easy to use, and the language is
suitable for any problem that displays non-deterministic con-
currency and mutable state. Specific examples include data
analytics, financial systems, and video games.

The language uses carefully chosen default capabilities
to minimise the required annotations. In addition, the com-
piler guides the programmer as to which annotations should
be used, infers annotations locally, and performs automatic
recovery in some circumstances. As a result, when imple-
menting LINPACK GUPS (in app. F) we require just 8 cap-
ability annotations and 3 uses of recover in 249 LOC. In ap-
proximately 10k LOC in the standard library, 89.3% of types
required no annotation.

Deny properties are also amenable to a highly efficient
implementation. We have benchmarked our language against
other actor-model languages with the CAF [11] benchmark
suite [2] and against MPI with HPC Challenge LINPACK
GUPS [1]. Benchmarking was done on a 12-core 2.3 GHz
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Benchmark: Creating 1,048,576 actors
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Figure 13. Actor creation, where **** is our work.
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Figure 14. Mailbox performance, where **** is our work.
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Figure 15. Mixed case performance, where **** is our
work.
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Figure 16. LINPACK GUPS, where **** is our work.

Opteron 6338P with 64 GB of memory across 2 NUMA
nodes. The results shown are the average of 100 runs.

In fig. 13, we show actor creation performance. Here,
our implementation is garbage collecting actors themselves
[15] as well as objects, but still outperforms existing sys-
tems other than CAF, which is neither garbage collected nor
data-race free. In fig. 14, we show performance of a highly
contended mailbox, where additional cores tend to degrade
performance7. In fig. 15, we show performance of a mixed
case, where a heavy message load is combined with brute
force factorisation of large integers.

In fig. 16, we show a benchmark that is not tailored for
actors: we take the GUPS benchmark from high-performance
computing, which tests random access memory subsystem
performance, and demonstrate that our implementation is
significantly faster than the highly optimised MPI imple-
mentation8.

The full language as implemented in the compiler in-
cludes additional features, such as generic types, traits,
structural types, type expressions (unions, intersections and
tuples), a non-null type system, sound constructors, pattern
matching, exceptions, and garbage collection.

The compiler, a web-based development sandbox, and a
language tutorial are available9.

10. Conclusions and further work
We have used deny properties to provide a more fundamental
basis for uniqueness and immutability. We have uncovered
a new form of uniqueness, write uniqueness, and have ex-
plored the use of an identity capability for asynchronous
method calls. Our extensions to viewpoint adaptation, in-
cluding safe-to-write semantics, aliasing for non-reflexive

7 In fig. 13 and 14, Scala performance with fewer than 3 cores has been
elided to compress the y axis.
8 We show only power-of-two core counts because the MPI implementation
is optimised for this case.
9 These are supplied in supplementary material.
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sub-typing, and unaliased types, allow more operations on
unique types.

In future work, we intend to extend the formalisation in
this paper to cover and prove soundness for these features.
We also intend to formalise our use of the type system to
improve both concurrent and distributed garbage collection.
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Appendix
A. Naming conventions, shorthands and

lookup functions
We use the naming conventions given in fig.9, and the short-
hands defined in fig. 17.

Lookup functions are defined in fig. 18. Function P re-
turns a type definition for a class identifier C or actor identi-
fier A. This contains the fields F, constructors K, functions M,
and behaviours B defined for that type. Since classes have no
asynchronous behaviour, the last entry in P(C) is empty, i.e.
ε. FunctionFs returns the identifiers of all fields defined in a
type S, and function F returns the type of field f in S. Func-
tion M returns method information for some method in S.
This is overloaded on both the method identifier and the type
identifier in order to handle class constructors, actor con-
structors, synchronous methods (functions) and asynchron-
ous methods (behaviours). The information returned is a
tuple of four components: the receiver type, the names and
types of the parameters, the body of the method in the form
of a source expression, and the return type. The capability
of the receiver and the return type can vary for synchron-
ous methods, but not for constructors or asynchronous meth-
ods. Constructors always operate on a ref receiver, since the
constructor must write to the new object’s fields, and return
a ref◦ result, since the new object is initially mutable but
also unaliased, since the constructor’s reference to the re-
ceiver (this) is implicitly discarded when the constructor
returns. This allows a constructor that is passed only send-
able references as parameters to be embedded in a recover
expression, giving the capability iso◦, which can be aliased
as iso, which is a subtype of all other capabilities. This al-
lows constructing an object with any capability. Asynchron-
ous methods always operate on a ref receiver. This is be-
cause the receiver of an asynchronous method is always an
actor; when the body is executed, a new stack with the re-
ceiver as the root actor is created. Since each actor executes
the body of a single behaviour (or asynchronous constructor)
at any given time, every behaviour body can read from and
write to the receiver. Since an asynchronous method cannot,
by definition, perform any operations at the call site before
returning, the only possible return values are the receiver or
null. We have chosen to return the receiver to allow chaining
method calls.

B. Operational semantics
Definition 4. We call an expression e a redex if it has one of
the following forms:

e ::= z.f | z.f = y | z.m(y) | z.b(y) | S.k(z)

Lemma 1. Uniqueness of contexts. For any expressions e1,
e2 and contexts E1[·], E2[·], if E1[e2] ≡ E2[e2] and e1 and e2
are redexes then E1[·] ≡ E2[·] and e1 ≡ e2.

• ϕ(x) = ϕ ↓2 (x) ↓1
• ϕ[x 7→ v] = (ϕ ↓1, ϕ ↓2 [x 7→ v], ϕ ↓3)

• χ(ι, f) = χ(ι) ↓2 (f)

• χ[ω, f 7→ v] = χ[ω 7→ (χ(ω) ↓1, χ(ω) ↓2 [f 7→ v]]

• χ[α, f 7→ v] = χ[α 7→ (χ(α) ↓1, χ(α) ↓2 [f 7→
v], χ(α) ↓3, χ(α) ↓4, χ(α) ↓5)]

• χ[α 7→ (σ, e)] = χ[α 7→ (χ(α) ↓1, χ(α) ↓2, χ(α) ↓3
, σ, e]

• χ[α 7→ µ] = χ[α 7→ (χ(α) ↓1, χ(α) ↓2, µ, χ(α) ↓4
, χ(α) ↓5]

Figure 17. Auxiliary definitions

P = CT AT

class C F K M ∈ CT

P(C) = F K M ε
C ∈ P

P = CT AT

actor A F K M B ∈ AT

P(A) = F K M B

A ∈ P

P(S) = F K M B

Fs(S) = {f | var f : T ∈ F}

P(S) = F K M B var f : T ∈ F

F(S, f) = T

P(C) = F K M (new k(x : T)⇒ e) ∈ K

M(C, k) = (C ref, x : T, e, C ref◦)

P(A) = F K M B (new k(x : T)⇒ e) ∈ K

M(A, k) = (A var, x : T, e, A tag)

P(S) = F K M B (funκ m(x : T) : ET⇒ e) ∈ M

M(S, m) = (Sκ, x : T, e, ET)

P(A) = F K M B (be b(x : T)⇒ e) ∈ B

M(A, b) = (A ref, x : T, e, A tag)

Figure 18. Lookup functions
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∀S ∈ P. ` S�
` P�

WF-PROGRAM

P(S) = F K M B

∀var f : Sκ ∈ F. ` S � ∀K ∈ K.S ` K�
∀M ∈ M.S ` M � ∀B ∈ B.S ` B�

` S�
WF-TYPE

[this 7→ C var, x 7→ T] ` e : C var◦
C ` new k(x : T)⇒ e�

WF-CTOR

[this 7→ Sκr, x 7→ T] ` e : ET

S ` funκr m(x : T) : ET⇒ e�
WF-SYNC

Sendable(Ti)
[this 7→ A var, x 7→ T] ` e : A tag

A ` new k(x : T)⇒ e�
WF-ATOR

Sendable(Ti)
[this 7→ A var, x 7→ T] ` e : A tag

A ` be b(x : T)⇒ e�
WF-ASYNC

Figure 19. Well-formed programs

• z ∈ ϕ iff z ∈ dom(ϕ ↓2)

• α ∈ χ iff α ∈ dom(χ)

• ∆ ` α ∈ χ iff α ∈ dom(χ)

• ∆ ` ι ∈ χ iff ∃ι′ such that ∆ ` ι′ ∈ χ and ∆, χ, ι′ ` ι :
_

•M(ϕ, χ) =M(χ(ϕ(this) ↓1, ϕ ↓1)

Figure 20. Auxiliary well-formedness definitions

C. Type system and well-formed programs
The rules for a well-formed program are presented in fig.
19. The WF-PROGRAM rule indicates a program is well-
formed if all types in the program are well-formed. The WF-
TYPE rule indicates that a type is well-formed if the types of
all of its fields are well-formed, its constructors are well-
formed, and its synchronous and asynchronous methods are
well-formed. The WF-CTOR, WF-SYNC, and WF-ASYNC
rules indicate that a method is well-formed when the body
of the method in results in a subtype of the return type
of the method. The body of the method is evaluated using
an environment composed of the receiver and the method
parameters, each mapped to their type, as shown in fig. 6.

Lemma 2. Context lemma.

1. Γ ` E[e] : ET ⇒ ∃ET′ and Γ, y 7→ ET′ ` E[y] : ET and
Γ ` e : ET′ and y /∈ dom(Γ)

2. Γ, y 7→ ET′ ` E[y] : ET and Γ ` e : ET′ and y free in
E[·]⇒ Γ ` E[e] : ET

Lemma 3. Properties of capability operators.
∀κ, κ1, κ2 :

1. If κ1 ∼g κ2, then κ1 ∼l κ2.

2. If κ1 ≤ κ2, then

(a) κ1 ∼l κ⇒ κ2 ∼l κ

(b) κ1 ∼g κ⇒ κ2 ∼g κ

3. If κ1 ∼l κ2, and both κ1 . κ and κ2 . κ are defined, then
κ1 . κ ∼l κ2 . κ.

4. If κ1 ∼g κ2, and both κ1 . κ and κ2 . κ are defined, then
κ1 . κ ∼g κ2 . κ

5. κ2 ≤ κ1 . κ2 or κ1 = val or κ1 . κ2 undefined
6. If A(κ1) ≤ κ2 then

(a) κ1 ∼l κ⇒ κ2 ∼l κ

(b) κ1 ∼g κ⇒ κ1 ∼g κ

(c) A(κ1 . κ) ≤ κ2 . κ
7. If A(κ1) ≤ κ2 and A(κ2) ≤ κ4 then

(a) κ1 ∼l κ2 ⇒ κ3 ∼l κ4
(b) κ1 ∼g κ2 ⇒ κ3 ∼g κ4

Proof. By case analysis on κ1 and κ2.

On the other hand, κ1 ≤ κ2does not imply that κ . κ2 ≤
κ . κ2. For example, iso ≤ trn, but box . iso = tag �
box . trn = box. Similarly, κ1 ≤ κ2does not imply that
κ1 . κ ≤ κ2 . κ; take iso . trn = tag � trn . trn = trn.
Finally the .-operator is not associative, i.e. (κ1 .κ2).κ3 6=
κ1 . (κ2 . κ3); take (iso . trn) . val = ⊥ 6= iso . (trn .
val) = val.

D. Well-formed runtime configurations
Lemma 4. Properties of deep viewpoint adaptation.
∀κ, κ1..., κn :

1. If κ1 ≤ κ2then κ1 I κ ≤ κ2 . κ, or κ2 = val.
2. κ1 I κ2 = val iff κ1 . κ2 = val.
3. κ1 I κ2 ≤ κ1 . κ2
4. (...(κ1 I κ2) I κ3...) I κn ≤ (...(κ1 . κ2) . κ3...) . κn
5. (...(κ1 I κ2) I κ3...) I κn = val iff (...(κ1 . κ2) .
κ3...) . κn = val

6. If κ1 ∼l κ2and κ1, κ2 6= tag, then κ1 I κ ∼l κ2 I κ
or κ1 = κ2 = ref

7. If κ1 ∼g κ2and κ1, κ2 6= tag then κ1 I κ ∼g κ2 I κ
8. If A(κ1) ≤ κ2 and κ1 6= κ2 6= tag then A(κ1 I κ) ≤
κ2 I κ

Lemma 5. Capabilities are preserved along paths.
If ∆, χ, α ` ι : κ, p and ∆, χ, α ` ι : κ′, p then κ = κ′.

Proof. By induction over the structure of p.

E. Soundness
The property central to any soundness argument is the pre-
servation of the well-formed visibility property, WFV (∆, χ),
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and the well-formed temporaries property WFT (∆, χ, α, i, e)
for all expressions and continuations. To study the former,
we need properties about the creation of new paths, while
for the latter, we need to control the types we assign to the
temporaries in each step.

E.1 New paths
Lemma 6. Simplification.

If

1. A(κ1 φ) ≤ κ2
2. κ2 ≤ κ3
3. κ4 / κ2 or κ4 / κ3

Then

4. A(κ1 φ) ≤ κ3
5. κ4 /A(κ1 φ) or κ4 / κ3

Proof. (4) follows from (1) and (2). For (5), if κ4 / κ3, done.
Otherwise, κ′2 = A(κ1 φ). If κ4 = ref, then for all κ1 φ,
κ4 /κ

′
2. If κ4 = trn, then κ2 ∈ {iso, trn, val, tag} 63 κ3.

If κ′2 ∈ {iso, trn, val} then κ1 φ ∈ {iso◦, trn◦, val}
and trn/κ′2. If κ′2 = tag then κ3 = tag, which contradicts
κ4 6 /κ3. If κ4 = iso, the same holds, except κ2 cannot be
trn.

Definition 5. Unaliased types can be treated as base types.
ET′ v ET iff ET′ = ET, or ET′ = Sκ◦ and ET = Sκ

Definition 6. An identifier z is aliased in a runtime expres-
sion e iff
∃E[·], e′, f, y, e, n, S such that

• e ≡ E[x = z] or
• e ≡ E[e′.f = z] or
• e ≡ E[e′.n(y, z, e)] or
• e ≡ E[z.n(y)] or
• e ≡ E[S.k(y, z, e)]

Lemma 7. Inversion.
If Γ ` e : ET then

1. If e ≡ x then Γ(x) v ET

2. If e ≡ e1.f then ∃S, S′, κ, κ′ such that Γ ` e1 : Sκ and
F(S, f) = S′ κ′ and ET = S′ κ . κ′.

3. If e ≡ null then ∃S such that S iso◦ v ET

4. If e ≡ e1; e2 then ∃ET1 such that Γ ` e1 : ET1 and
Γ ` e2 : ET

5. If e ≡ x = e1 then ∃S, κ, κ′, φ such that Γ(x) = Sκ and
Γ ` e1 : Sκ′ φ and A(κ′ φ) ≤ κ and U(Sκ) v ET

6. If e ≡ e1.f = e2 then ∃S1, S2, κ1, κ2, φ such that
Γ ` e1 : S1 κ1 and Γ ` e2 : S2 κ2 φ and
F(S1, f) = S2 κ3 and A(κ2 φ) ≤ κ3,
either κ1 / κ3 or κ1 /A(κ2 φ),
and U(S2 κ1 . κ3) v ET

7. If e ≡ e0.m(e) then ∃S0, κ0, κ′0, φ, T, ET, ET′ such that
Γ ` e0 : S0 κ0 φ and A(κ0 φ) ≤ κ′0 and

M(S0, m) = (S0 κ
′
0, x : T, _, ET′) and

Γ ` ei : ETi and A(ETi) ≤ Ti and ET′ v ET

8. If e ≡ e0.b(e) then ∃A, κ0, κ′0, φ, T such that
Γ ` e0 : Aκ0 φ and A(κ0 φ) ≤ κ′0 and
M(A, b) = (A ref, x : T, _, A tag) and
sendable(Ti) and Γ ` ei : ETiand A(ETi) ≤ Ti and
A tag = ET

9. If e ≡ C.k(e)then ∃ET, T such that
M(C, k) = (C ref, x : T, _, C ref◦) and
Γ ` ei : ETiand A(ETi) ≤ Ti and C ref◦ v ET

10. If e ≡ A.k(e)then ∃ET, T such that
M(A, k) = (A ref, x : T, _, A tag) and
sendable(Ti) and Γ ` ei : ETiand A(ETi) ≤ Ti and
A tag = ET

11. If e ≡ recover e′ then ∃ET′ such that
Γ′ = Γ\{x | ¬sendable(Γ(x))} and
Γ′ ` e′ : ET′ andR(ET′) v ET

Proof. By induction on the typing of Γ ` e : ET. For case 6
(field assignment), apply lemma 6.

Lemma 8. Temporaries and variables with unique capabil-
ities are unique.

If

1. WFV (∆, χ)

2. χ(α, i, z) = χ(α′, i′, z′) = ι

3. ∆(α, i, z) = Sκφ

4. κ ∈ {iso, trn}
5. ∆, χ, α′ ` ι : κ′, (i′, z′)

Then α = α′ and either κ ∼` κ
′ or (i, z) = (i′, z′).

Proof. Assume that α 6= α′. Then, by WFV .1 , κ ∼g κ′.
This implies κ′ = tag, which contradicts 5. Therefore, α =
α′ and ∆, χ, α′ ` ι : κ, (i, z). If Stable(∆, α, (i, z)) then
by WFV .2 , either κ ∼` κ

′ (done) or χ, α ` (i, z) ∼ (i′, z′),
which requires (i, z) = (i′, z′) (done). If¬Stable(∆, α, (i, z))
then z = t and by WFV .4 either (i, z) = (i′, z′) (done)
or ∃ι′, κ′′, p′, f such that κ ≤ κ′′ and κ′′ ∈ {iso, trn}
and (i′, z′) = p′ · f and ∆, χ, α ` ι′ : κ′′, p′ and
∆, χ, ι′ ` ι : κ, (0, this) · f, so f = ε and p′ = (i′, z′)
and ι = ι′. This gives us ∆, χ, ι ` ι : κ, (0, this), which by
the definition of visibility gives us κ = ref, which contra-
dicts (4) (done).

Lemma 9. Isolation in well-formed visibility.
If

1. WFV (∆, χ)

2. ∆(α, i, t) = Sκφ and χ(α, i, t) = ι and κ ∈ {iso, trn}
3. ∆, χ, α′ ` ι : κ′, p

Then

4. If κφ = iso◦ then α = α′ and p = (i, t).
5. If κφ = trn◦ then α = α′ and either p = (i, t) or
κ′ = box.
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6. If κφ = iso then α = α′ and either p = (i, t) or
∃ι′, κ′′, p′, f such that κ ≤ κ′′ and κ′′ ∈ {iso, trn}
and p = p′ · f and ∆, χ, α ` ι′ : κ′′, p′ and ∆, χ, ι′ ` ι :
iso, f.

7. If κφ = trn then α = α′ and either p = (i, t)
or κ′ = box or ∃ι′, p′, f such that p = p′ · f and
∆, χ, α ` ι′ : trn, p′ and ∆, χ, ι′ ` ι : trn, f.

Proof. (4) and (5) follow from lemma 8. (5) and (6) follow
from lemma 8 and WFV .4 .

Lemma 10. Aliasing and replaceability.
If

1. Γ ` e : ET and z is aliased in e

2. z does not appear more than once in e

3. Γ(z) is not unaliased
4. Γ′ = Γ[z 7→ A(Γ(z))]

Then Γ′ ` e : ET

Proof. By induction over the structure of e. We apply lemma
7. Moreover, we use the fact that ∀κ.A(A(κ)) = A(κ). The
base cases are expressions that can alias z.

• If e ≡ x = z then, by lemma 7, we obtain Γ(x) = Sκ
and Γ(z) = Sκ′ φ and φ 6= ◦ and A(κ′) ≤ κ. Therefore,
we have A(A(κ′)) ≤ κ and so Γ′ ` x = z : ET.

• If e ≡ e′.f = z then, by lemma 7, we obtain Γ ` e′ : Sκ
and F(S, f) = S′ κ′ and Γ(z) = S′ κ′′ φ and φ 6= ◦ and
A(κ′′) ≤ κ′. Therefore, we have A(A(κ′′)) ≤ κ′ and so
Γ′ ` e′.f = z : ET.

• If e ≡ e′.n(y, z, e) then, by lemma 7, we obtain Γ `
e′ : Sκ and M(S, n) = (_, x : Sκ, _, _) and Γ(z) =
Si κ

′
i φ and and φ 6= ◦ and A(κ′i) ≤ κi. Therefore, we

have A(A(κ′i)) ≤ κi and so Γ′ ` e′.n(y, z, e) : ET.
• If e ≡ z.n(y) then, by lemma 7, we obtain Γ(z) =
Sκφ and φ 6= ◦ and M(S, n) = (Sκ′) and A(κ) ≤
(κ′). Therefore, we have A(A(κ)) ≤ κ′ and so Γ′ `
z.n(y) : ET.

• If e ≡ S.k(y, z, e)then, by lemma 7, we obtainM(S, k) =
(_, x : Sκ, _, _) and Γ(z) = Si κ

′
i φ and and φ 6= ◦ and

A(κ′i) ≤ κi. Therefore, we have A(A(κ′i)) ≤ κi and so
Γ′ ` S.k(y, z, e) : ET.

For the inductive step, if e ≡ E[e′]and z is aliased in e,
then, by lemma 2, we obtain that ∃ET′, y /∈ Γ such that Γ `
e′ : ET′ and Γ[y 7→ ET′] ` E[y] : ET, and so Γ′ ` e′ : ET′.
Therefore, by lemma 2, we obtain Γ′ ` E[e′] : ET.

Lemma 11. Origins of temporary identifiers.
If

1. z appears once in expression e

2. z is not aliased in e

Then ∃E′ such that

3. e ≡ E′[z.f], or

4. e ≡ E′[z.f = e′], or
5. e ≡ E′[recover z], or

Proof. By application of definition 6.

Lemma 12. If Γ, x : T1 ` e : ET1 and A(T2) ≤ T1 then
∃ET2.Γ, x : T2 ` e : ET2 and ET1 = ET2 or A(ET2) ≤ ET1

Proof. By structural induction on the typing and lemma 3.

Lemma 13. New paths through field read.
If

1. χ(α, i, z) = ι

2. ∆(α, i, z) = Sκφ

3. χ(ι, f) = ι′ and F(S, f) = S′ κ′

4. T = ⊥ if z = t′, Sκ otherwise
5. ∆′ = ∆[(α, i, z) 7→ T, (α, i, t) 7→ S′ κ . κ′)]

6. T (∆(α, i)) ⊆ {z}
Then

7. ∀α′, ι′′, κ′′, p′ if ∆′, χ, α′ ` ι′′, κ′′, p′ then

(a) ∆, χ, α′ ` ι′′ : κ′′, p′ or
(b) α′ = α and ∃f, κ such that

i. p′ = (i, t) · f
ii. κ′′ = κ . κ′I κ

iii. ∆, χ, α ` ι′′ : κ I κ′I κ, (i, z) · f · f
8. If WFV (∆, χ) then WFV (∆′, χ) and T (∆′(α, i)) ⊆
{t}

Lemma 14. New paths through local assignment.
If

1. χ(α, i, z) = ι and χ(α, i, x) = ι′ and t /∈ χ(α, i)

2. ∆(α, i, z) = Sκφ and ∆(α, i, x) = Sκ′

3. χ′ = χ[(α, i, x) 7→ ι, (α, i, t) 7→ ι′]

4. T = ⊥ if z = t′, Sκ otherwise
5. ∆′ = ∆[(α, i, z) 7→ T, (α, i, t) 7→ U(Sκ′)]

6. T (∆(α, i)) ⊆ {z}

Then

7. ∀α′, ι′′, κ′′, p if ∆′, χ′, α′ ` ι′′ : κ′′, p then

(a) ∆, χ, α′ ` ι′′ : κ′′, p or
(b) α = α′ and ∃f, κ such that

i. p = (i, x) · f and κ′′ = κ′I κ and
∆, χ, α ` ι′′ : κI κ, (i, z) · f, or

ii. p = (i · t) · f and κ′′ = κ′I κ and
∆, χ, α ` ι′′ : κ′I κ, (i, x) · f

8. IfA(κφ) ≤ κ′ and WFV (∆, χ) then WFV (∆′, χ′) and
T (∆′(α, i)) ⊆ {t}

Lemma 15. New paths through field assignment.
If

1. χ(α, i, z) = ι and χ(α, i, z′) = ι′
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2. ∆(α, i, z) = Sκφ and ∆(α, i, z′) = S′ κ′ φ′

3. χ(ι, f) = ι′′ and F(S, f) = S′ κ′′

4. χ′ = χ[(ι, f) 7→ ι′, (α, i, t) 7→ ι′′]

5. T = ⊥ if z = t′, Sκ otherwise
6. T′ = ⊥ if z′ = t′′, S′ κ′ otherwise
7. ∆′ = ∆[(α, i, z) 7→ T, (α, i, z′) 7→ T′, (α, i, t) 7→
U(S′ κ . κ′′)]

8. T (∆(α, i)) ⊆ {z, z′}

Then

9. ∀α′, ι′′′, κ′′′, p′ if ∆′, χ′, α′ ` ι′′′ : κ′′′, p′ then
(a) ∆, χ, α′ ` ι′′′ : κ′′′, p′ or
(b) α′ = α and ∃f, κ such that

i. κ′′′ = κ I κ′′I κ and p′ = (i, z) · f · f and
∆, χ, α ` ι′′′ : κ′I κ, (i, z′) · f, or

ii. κ′′′ = U(κ . κ′′)I κ and p′ = (i, t) · f and
∆, χ, α ` ι′′′ : κ I κ′′I κ, (i, z) · f · f, or

iii. ∃κ′′′′, p 6= (i, z) such that κ′′′ = κ′′′′ I κ′′I κ
and p′ = p · f · f and ∆, χ, α ` ι : κ′′′′, p

10. IfA(κ′ φ′) ≤ κ′′ and (κ/κ′ or κ/κ′′) and WFV (∆, χ)
then WFV (∆′, χ′) and T (∆′(α, i)) = ∅

Lemma 16. New paths through message passing.
If

1. χ(α, i, z) = ι and ∆(α, i, z) = Sκφ

2. χ′ = χ[(α′,−j, x) 7→ ι]

3. T = ⊥ if z = t, Sκ otherwise
4. ∆′ = ∆[(α, i, z) 7→ T, (α′,−j, x) 7→ Sκ′]

5. T (∆(α, i)) ⊆ {z}

Then

6. ∀α′′, ι′′, κ′′, p if ∆′, χ′, α′′ ` ι′′ : κ′′, p then
(a) ∆, χ, α′′ ` ι′′ : κ′′, p or
(b) α′′ = α′ and ∃f, κ such that

i. p = (−j, x) · f
ii. κ′′ = κ′I κ

iii. ∆, χ, α ` ι′′ : κI κ, (i, z) · f
7. If A(κφ) ≤ κ′ and sendable(κ′) and WFV (∆, χ) then

WFV (∆′, χ′) and T (∆′(α, i)) = ∅

E.2 Preservation of well-formedness
Lemma 17. Type preservation on same frame.

For all heaps χ, actors α, global type environments ∆,
frames ϕ, stacks σ and expressions e, if

1. χ(α) = (_, _, _, α · ϕ · ϕ, E[e]) and |ϕ̄| = i− 1

2. χ, α · ϕ · ϕ, e χ′′, α · ϕ · ϕ′, e′
3. χ′ = χ′′[α 7→ (α · ϕ · ϕ, E[e′])]

4. ∆(α, i) ` e : ET

5. ∆ ` χ�
Then ∃∆′ such that

1. ∆′(α, i) ` e′ : ET

2. ∆′ ` χ′�

Lemma 18. Type preservation for method call.
For all heaps χ and actors α, if

1. χ(α) = (_, _, _, σ · ϕ, E[e])

2. χ, σ · ϕ, e χ′′, σ · ϕ · ϕ′, e′
3. χ′ = χ′′[α 7→ (σ · ϕ · ϕ′, E[e′])]

4. ∆ ` χ�

Then ∃∆′ such that ∆′ ` χ′�

Lemma 19. Type preservation upon method return
For all heaps χ and actors α, if

1. χ(α) = (_, _, _, σ · ϕ · ϕ′, z)

2. t /∈ ϕ and ϕ′′ = ϕ[t 7→ ϕ′(z)]

3. ϕ′ = (_, _, E[·])
4. χ′ = χ[α 7→ (σ · ϕ′′, E[t])]

5. ∆ ` χ�

Then ∃∆′ such that ∆′ ` χ′�

Lemma 20. Type preservation upon message handling.
For all heaps χ and actors α, if

1. χ(α) = (A, fs, (n · v̄) · µ, α, ε)
2. M(A, n) = (_, x : T, e, _)

3. ϕ = (n, [this 7→ α, x̄ 7→ v̄], ·)
4. χ′ = χ[α 7→ (A, fs, µ, (α · ϕ), e)]

5. ∆ ` χ�

Then ∃∆′ such that ∆′ ` χ′�

F. GUPS benchmark source code
1 use "options"
2 use "time"
3 use "collections"
4
5 class Config
6 var logtable: U64 = 20
7 var iterate: U64 = 10000
8 var logchunk: U64 = 10
9 var logactors: U64 = 2

10
11 fun ref apply(env: Env): Bool =>
12 var options = Options(env)
13
14 options
15 .add("logtable", "l", None, I64Argument)
16 .add("iterate", "i", None, I64Argument)
17 .add("chunk", "c", None, I64Argument)
18 .add("actors", "a", None, I64Argument)
19
20 for option in options do
21 match option
22 | ("table", var arg: I64) => logtable = arg.u64()
23 | ("iterate", var arg: I64) => iterate = arg.u64()
24 | ("chunk", var arg: I64) => logchunk = arg.u64()
25 | ("actors", var arg: I64) => logactors = arg.u64()
26 | ParseError =>
27 env.out.print(
28 """
29 gups_opt [OPTIONS]
30 --table N log2 of the total table size.

Defaults to 20.
31 --iterate N number of iterations.

Defaults to 10000.
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32 --chunk N log2 of the chunk size.
Defaults to 10.

33 --actors N log2 of the actor count.
Defaults to 2.

34 """
35 )
36 return false
37 end
38 end
39
40 env.out.print(
41 "logtable: " + logtable.string() +
42 "\niterate: " + iterate.string() +
43 "\nlogchunk: " + logchunk.string() +
44 "\nlogactors: " + logactors.string()
45 )
46 true
47
48 actor Main
49 let _env: Env
50 let _config: Config = Config
51
52 var _updates: U64 = 0
53 var _confirm: U64 = 0
54 let _start: U64
55 var _actors: Array[Updater] val
56
57 new create(env: Env) =>
58 _env = env
59
60 if _config(env) then
61 let actor_count = 1 << _config.logactors
62 let loglocal = _config.logtable - _config.logactors
63 let chunk_size = 1 << _config.logchunk
64 let chunk_iterate = chunk_size * _config.iterate
65
66 _updates = chunk_iterate * actor_count
67 _confirm = actor_count
68
69 var updaters = recover Array[Updater](actor_count)

end
70
71 for i in Range[U64](0, actor_count) do
72 updaters.push(Updater(this, actor_count, i,

loglocal, chunk_size,
73 chunk_iterate * i))
74 end
75
76 _actors = consume updaters
77 _start = Time.nanos()
78
79 try
80 for a in _actors.values() do
81 a.start(_actors, _config.iterate)
82 end
83 end
84 else
85 _start = 0
86 _actors = recover Array[Updater] end
87 end
88
89 be done() =>
90 if (_confirm = _confirm - 1) == 1 then
91 try
92 for a in _actors.values() do
93 a.done()
94 end
95 end
96 end
97
98 be confirm() =>
99 _confirm = _confirm + 1

100
101 if _confirm == _actors.size() then
102 let elapsed = (Time.nanos() - _start).f64()
103 let gups = _updates.f64() / elapsed
104
105 _env.out.print(
106 "Time: " + (elapsed / 1e9).string() +
107 "\nGUPS: " + gups.string()
108 )

109 end
110
111 actor Updater
112 let _main: Main
113 let _index: U64
114 let _updaters: U64
115 let _chunk: U64
116 let _mask: U64
117 let _loglocal: U64
118
119 let _output: Array[Array[U64] iso]
120 let _reuse: List[Array[U64] iso] = List[Array[U64] iso]
121 var _others: (Array[Updater] val | None) = None
122 var _table: Array[U64]
123 var _rand: U64
124
125 new create(main:Main, updaters: U64, index: U64,

loglocal: U64, chunk: U64,
126 seed: U64)
127 =>
128 _main = main
129 _index = index
130 _updaters = updaters
131 _chunk = chunk
132 _mask = updaters - 1
133 _loglocal = loglocal
134
135 _rand = PolyRand.seed(seed)
136 _output = _output.create(updaters)
137
138 let size = 1 << loglocal
139 _table = Array[U64].undefined(size)
140
141 var offset = index * size
142
143 try
144 for i in Range[U64](0, size) do
145 _table(i) = i + offset
146 end
147 end
148
149 be start(others: Array[Updater] val, iterate: U64) =>
150 _others = others
151 iteration(iterate)
152
153 be apply(iterate: U64) =>
154 iteration(iterate)
155
156 fun ref iteration(iterate: U64) =>
157 let chk = _chunk
158
159 for i in Range(0, _updaters) do
160 _output.push(
161 try
162 _reuse.pop()
163 else
164 recover Array[U64](chk) end
165 end
166 )
167 end
168
169 for i in Range(0, _chunk) do
170 var datum = _rand = PolyRand(_rand)
171 var updater = (datum >> _loglocal) and _mask
172
173 try
174 if updater == _index then
175 _table(i) = _table(i) xor datum
176 else
177 _output(updater).push(datum)
178 end
179 end
180 end
181
182 try
183 let to = _others as Array[Updater] val
184
185 repeat
186 let data = _output.pop()
187
188 if data.size() > 0 then
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189 to(_output.size()).receive(consume data)
190 else
191 _reuse.push(consume data)
192 end
193 until _output.size() == 0 end
194 end
195
196 if iterate > 1 then
197 apply(iterate - 1)
198 else
199 _main.done()
200 end
201
202 be receive(data: Array[U64] iso) =>
203 try
204 for i in Range(0, data.size()) do
205 let datum = data(i)
206 var j = (datum >> _loglocal) and _mask
207 _table(j) = _table(j) xor datum
208 end
209
210 data.clear()
211 _reuse.push(consume data)
212 end
213
214 be done() =>
215 _main.confirm()
216
217 primitive PolyRand
218 fun apply(prev: U64): U64 =>
219 (prev << 1) xor if prev.i64() < 0 then _poly() else 0

end
220
221 fun seed(from: U64): U64 =>
222 var n = from % _period()
223
224 if n == 0 then
225 return 1
226 end
227
228 var m2 = Array[U64].undefined(64)
229 var temp = U64(1)
230
231 try
232 for i in Range(0, 64) do
233 m2(i) = temp
234 temp = this(temp)
235 temp = this(temp)
236 end
237 end
238
239 var i: U64 = 64 - n.clz()
240 var r = U64(2)
241
242 try
243 while i > 0 do
244 temp = 0
245
246 for j in Range(0, 64) do
247 if ((r >> j) and 1) != 0 then
248 temp = temp xor m2(j)
249 end
250 end
251
252 r = temp
253 i = i - 1
254
255 if ((n >> i) and 1) != 0 then
256 r = this(r)
257 end
258 end
259 end
260 r
261
262 fun _poly(): U64 => 7
263
264 fun _period(): U64 => 1317624576693539401
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